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Special Issue on Stabilized, Multiscale, and Multiphysics Methods

in Fluid Mechanics

This special issue of the Journal of Applied Mechanics is based
on the ASME International Mechanical Engineering Congress and
Exposition ASMEOS and ASMEOQ6. The mini-symposium on
Challenges and Advances in Flow Simulation and Modeling: Fun-
damental and Enabling Technologies was held at ASMEOS in Or-
lando, Florida, November 5-11, 2005, and the mini-symposium
on Stabilized, Multiscale and Multiphysics Methods was held at
ASMEQ6 in Chicago, Illinois, November 5-10, 2006. The scope
of the two symposia included all aspects of the stabilized and
multiscale finite element methods as well as their applications to
coupled fluid-structure interaction problems. The papers presented
at the two symposia included (i) mathematical theory of the sta-
bilized and multiscale finite element methods, (ii) new stabilized
formulations, (iii) stabilized methods applied to fluid-structure in-
teraction problems, (iv) large scale computations with stabilized
methods, and (v) application of stabilized methods to biofluid dy-
namics.

This special issue contains 12 papers that present a spectrum of
physical problems where stabilized methods have been applied.

The paper by Catabriga, Souza, Coutinho and Tezduyar pre-
sents inviscid compressible flow calculations with the YZB shock-
capturing parameter. The shock-capturing parameter based on
conservation variables is compared with a parameter based on the
entropy variables, and a sequence of numerical tests including 1D,
2D and 3D examples are presented.

Rispoli, Saavedra, Menichini and Tezduyar present an applica-
tion of the YZB shock capturing technique integrated in a variable
subgrid scale formation for inviscid supersonic flows. They show
a variety of test problems for high Mach number flows.

Corsini, Menichini, Rispoli, Santoriello and Tezduyar develop a
stabilization technique that is based on a variational multiscale
method. Their technique includes a discontinuity-capturing term
designed to be operative when the solution gradients are high and
the reaction-like terms are dominant. They show applications of
their method on a sequence of 2D and 3D problems.

The work by Manguoglu, Saied, Sameh, Tezduyar and Sathe
presents new preconditioning techniques for solving the nonsym-
metric systems that arise from the discretization of the Navier—
Stokes equations. They also show the effectiveness of their pro-
posed techniques for handling time-accurate as well as steady-
state solutions.

The work by Houseman, Kiris and Hafez presents time-
derivative preconditioning methods for numerical simulation of
inviscid multicomponent and multiphase flows. Their paper deals
with Riemann problems and presents two-dimensional applica-
tions. The time-derivative preconditioned system of equations is
shown to be hyperbolic in time and well-conditioned in the in-
compressible limit.
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The work by Takagi, Yamada, Gong and Matsumoto presents
an application of fluid mechanics to biofluid dynamics and to the
deformation of vesicles in a shear flow.

The paper by Cruchaga, Celentano and Tezduyar presents the
numerical and experimental analyses of the collapse of a water
column over an obstacle. Their computational model is based on a
stabilized formulation that is integrated with a moving interface
technique, namely the Edge-Tracked Interface Locator Technique
(ETILT) to calculate the evolution of the water-air interface.

A vector extrapolation method for strong coupling of the fluid-
structure interaction solvers is presented by Kuttler and Wall.
They consider the case of an incompressible fluid and nonlinear
elastodynamics, and present polynomial based vector extrapola-
tion schemes that are then applied to coupled FSI problems.

Brummelen presents the added mass effects of compressible
and incompressible flows in fluid-structure interaction. This work
shows that on increasingly small time intervals, the added mass of
a compressible flow is proportional to the length of the time in-
terval, whereas the added mass of an incompressible flow ap-
proaches a constant. The paper then presents the implications of
this difference on the stability and accuracy of loosely coupled
staggered time-integration methods.

The paper by Hauke and Fuster presents a variational multi-
scale a posteriori error estimation method that is based on ap-
proximating an exact representation of the error based on fine-
scale Green’s function.

Kannan and Masud present two stabilized formulations for the
Schrodinger wave equation. One is based on Galerkin/Least-
squares ideas and the second one is based on the Variational Mul-
tiscale ideas. Using the generalized Kronig—Penney problem they
present numerical convergence studies to demonstrate the accu-
racy and convergence properties of the two methods.

The papers presented in this special volume represent some of
the recent advances in the stabilized and multiscale finite element
methods and their application to a variety of problems. Lastly, we
are very grateful to those who have contributed to the success of
this special issue.

Arif Masud
University of Illinois at Urbana-Champaign

Tayfun E. Tezduyar
Rice University

Yoichiro Matsumoto
University of Tokyo
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Variational Multiscale A
Posteriori Error Estimation for

Guillermo Hauke
e-mail: ghauke@unizar.es

Daniel Fuster

Quantities of Interest

This paper applies the variational multiscale theory to develop an explicit a posteriori

LITEC (CSIC) — Area de Mecanica de Fluidos,
Centro Politecnico Superior Zaragoza,
G/Maria de Luna 3,

50018 Zaragoza, Spain

error estimator for quantities of interest and linear functionals of the solution. The
method is an extension of a previous work on global and local error estimates for
solutions computed with stabilized methods. The technique is based on approximating an
exact representation of the error formulated as a function of the fine-scale Green func-

tion. Numerical examples for the multidimensional transport equation confirm that the
method can provide good local error estimates of quantities of interest both in the diffu-
sive and the advective limit. [DOIL: 10.1115/1.3057403]

1 Introduction

Lately much of attention of a posteriori error estimation has
been placed in quantities of interest and functional outputs. In-
deed, in engineering and science applications many times one is
interested not just in the global solution, but in values or functions
of the solution at particular places. In these cases, it can be argued
that the computation should be driven by minimizing the error of
these searched quantities (see Refs. [1,2] and references therein).

Previous work on error estimation for quantities of interest is
typically based on the solution of two problems, the primal and
the dual problem. The primal problem is the fundamental math-
ematical model that gives the desired solution, whereas the dual
problem provides information on how the error in the primal prob-
lem influences the quantity of interest [1-4]. Applications of the
adjoint technique to advection-diffusion problems can be found in
Refs. [5,6] and references therein, and to methods involving sta-
bilized methods in Refs. [7,8] and references therein.

This paper takes on a different point of view, namely, the varia-
tional multiscale theory [9,10], which avoids solving the dual
problem. Furthermore, the method is set up as an explicit a pos-
teriori error estimator, leading to a very economical technology.

The variational multiscale theory has been investigated for ob-
taining an estimate of the error distribution in elliptic problems in
Ref. [11]. The technique to develop explicit a posteriori error es-
timators for the transport equation was presented in Ref. [12].
This approach has been shown exact for the class of edge-exact
solutions [13-15] and has been extended to multidimensional
transport problems in Ref. [16].

The success of the technique can be traced down to two rea-
sons. The first one is that the method solves analytically a priori
the dual problem. The second reason is that for the class of meth-
ods stemming from H(l) projection or optimization (like stabilized
methods [17-19]), the error distribution is practically local [20].
This strategy is, therefore, well suited to advection dominated
solutions computed with stabilized methods.

2 Preliminaries

This section reviews the point of departure.

2.1 The Abstract Problem. Consider a spatial domain ()
with boundary I'. The strong form of the boundary value problem
consists of finding u:Q—R such that for the given essential

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received October 31, 2007; final manu-
script received July 8, 2008; published online January 13, 2009. Review conducted
by Arif Masud.
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boundary condition g:I',—R, the natural boundary condition
h:T',—R, and forcing function f:Q—R, fel, (if [',=0, f
e H™'), the following equations are satisfied:

Lu=f in Q
u=g on I, (1)
Bu=h on I,

where L is in principle a second-order differential operator and 3
is an operator acting on the boundary, emanating from integration-
by-parts of the weak form.

2.2 The Variational Multiscale Error Estimation
Paradigm. The variational multiscale method [9] introduces a
sum decomposition of the exact solution u e SC H' into the finite
element solution (resolved scales) iz and the error (unresolved or
subgrid scales) u'

u=i+u' (2)

Typically i belongs to a finite element space S with Q¢, e

=1,...,n, disjoint elements. The union of element interiors is

denoted by Q= UZE]QK, whereas the interelement boundaries are

denoted by I'= UZel\I’, with I’ as the element boundary. Ac-
cordingly, the error u’ € &’ with §'=S5/S.

Then, the error of the numerical computation can be calculated
by the following paradigm [10,12]:

u'(x)=- ﬁ ' (x,y)(Lic - f)(y)dQd,

Q

- f 'y ([Bul)(y)dr, 3)
I,ur,

where x,y € ), g’ (x,y): QX Q— R is the Green’s function of the
fine-scale problem [9,10,20], and [-] is the generalization of the
jump operator [10,21] to include the error on the natural boundary
condition boundary

[Bu] on T
[Bul=yBi-h on I'*NT, 4)
0 on I'“N Fg

The fine-scale Green’s function g’(x,y) is the distribution that
characterizes the behavior of the numerical error, and emanates
from the proper projection of the global Green’s function. There-
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fore, it depends on the operator (with the corresponding geometry
and boundary conditions), on the finite element space, and on
the method (or projector). Furthermore, according to Hughes and
Sangalli [20] S’ is the kernel of the projector that defines the
method.

Following Hauke et al. [16], the error is split into contributions
stemming from element interiors and interelement boundaries

u' (%) = 10 (X) + U 4(x) (5)

where

W (X) =~ f ¢y (LiT- Hy)dQ,
Qy

(6)
U ppg(X) == f~ g'(x,y)([Bul)(y)dr’,
T,un

y=ly

3 Error of Quantities of Interest and Functional
Outputs

3.1 Functional Outputs. We are interested in a quantity of
interest F(u), which is given by the linear functional of u

F(u)= f K(x)u(x)dQ (7)

where o is a spatial domain w C ().

3.2 Examples of Functionals. Sections 3.2.1-3.2.3 show ex-
amples of functionals F(u) and K(x) to estimate the error at dis-
crete points of the domain for element mean values and integrals
of the solution on a boundary. For other particular cases, the ex-
pression of F(u) and K(x) can be deduced.

3.2.1 Pointwise Error. When it is required to control the error
at a particular point, the following functions have to be used:

F(u) = u(x) (8)
K(x) = 8(x — %) 9)

3.2.2 Element Mean Value. When it is required to control the
mean element error, then

F(u) = éf u(x)dQ) (10)
QL’

Kix) = 1/Q°¢, x e Q° "

()= 0, the rest (1)

3.2.3 Integral on a Boundary. To control the error along the
boundary of domain I’

Fu)=] u(x)dl (12)
roul
I, xely
K(x) = 13
®) {O, the rest (13)
3.3 Variational Multiscale Theory. Since F(u) is linear,

given a finite element solution i the error in the quantity of inter-
est can be calculated as

F(u'") =J K(x)u'(x)dQ) (14)

Substituting the exact error representation (3)

021201-2 / Vol. 76, MARCH 2009
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F(u’)=—f ﬁ K(x)g'(x,y)(Lit - f)(y)dQ,dQ,
o, Y,

- J J~ K(x)g'(x,y)([Bul)(y)dQ.dl',  (15)
r,ur,

3.3.1 Particular Case. Assume that Liu—fe P, (i.e., piece-
wise constant residual) and that u’=0 on I'®. The domain o is

made of elements. Then, the error on fyUFh vanishes, the fine-
scale Green’s function g’(x,y) becomes the element Green’s func-
tion g.(x,y) and

F(u')=—f f~ K(x)g'(x,y)(Lit - f)(y)dQ,dQ,
, Qy

Q°Co

=- 2 (Lia-yr f K(x) f 8.(x,y)dQ,dQ,
(0N Q)

=- > (Li-f) J K(x)b*(x)d€2,
o

Q°Co

=— > (La-HFB(x)

Q°Co

(16)

where b°(x) is the corresponding residual-free bubble [22-25] and
(Lu—f)¢ the residual in element Q°. Therefore, the error on the
functional can be calculated as the sum of elemental contributions.
This result is a consequence of the linearity of F(-).

Recall that the assumption u’=0 on I'* decouples the error be-
tween elements, and the residual-free bubble 5(x) can be calcu-
lated elementwise.

3.4 A Model for Error Estimation. Since the previous ex-
pression is hard to compute analytically, for practical computa-
tions it is very convenient to introduce some approximations,
similar to those in Ref. [16], which have been shown to be suc-
cessful for a posteriori error estimation.

The error F(u') is divided into two components,

F(M ) mt(u )+and(u )

stemming, respectively, from the element interiors and the ele-
ment interfaces,

(17)

lm(u ) F(M ml) f K(X)M 1m(X)dQ~

fJK(X)g (x.y)

X (Lii - f)(y)dQ,dQ, (18)
Fona(u') = Fu'y) = f K(X)u' q(x)d 02,
f f K(x)g'(x,y)
rur,
X ([Bu])(y)d€,dI’, (19)

Remark. The error emanating from element interior residuals is
the main contribution of the error in the advection dominated
regime, whereas the interelement boundary term is crucial for
predicting the error in the diffusion dominated regime [16].

Transactions of the ASME



Applying twice Holder’s inequality to Fj,(u') (see Ref. [26])

Fund)] = KGOl oyl 17~ Al o
(20)

with 1=p,g=o», 1=p’,q'=x, 1/p+1/g=1, and 1/p'+1/q’
=1. Likewise, for the interelement boundary error

|Fona )] = KGO, ollls” 3 e, o, )l s B 0
(21)
with the same conditions on p, ¢, p’, and ¢'.

3.4.1 Element Interior Error. The computation of the exact
error requires full knowledge of the fine-scale Green’s function
g’ (x,y), which can be analytically or computationally involved.
However, for the class of variational methods, such as stabilized
methods, where the error distribution is practically local [20], the
fine-scale Green’s function can be approximated by the element
Green’s function g.(x,y), which for linear elements satisfies
within each element

Lg,=6, in O

g.=0 on I'® (22)

where &;(x)=d(x~y) represents the Dirac delta distribution.
Following Hauke et al. [12-14] the error due to element interi-
ors is modeled as

U i(X) == f~ g'(x.y)(Lie - f)(y)dQ,
Q,

y

~- f g.(x,y)(Lii—f)(y)dQ, on Q°  (23)
[0

The preceding paradigm (23) is exact for element-edge-exact so-
lutions. This is the case of one-dimensional linear problems
solved with stabilized methods or one-dimensional Poisson prob-
lems solved with the Galerkin method.

Substituting in Eq. (18) and assuming that w is the union of
various elements

Fip(u") J K(X)u' i (x)d €2,

@y

> K(x)u';,(x)dQ,
QCo Y O

~- Ef J K(x)g.(x,y)
0co Y Q77O

X (L - f)(y)d€,dQ, (24)
Applying Holder’s inequality twice
F(u)] = 2 KGNz, e lllgex9llz ez, e
QCo ’
X ||£L7—ﬂ|Lq(m) (25)

with 1=p,g=x, 1=p',qg'=o, 1/p+1/g=1, and 1/p'+1/q’
=1. Now the norm of the element Green’s function can be written
as a function of the error time scales, which depend on the choice
of the above parameters.

3.4.2  Element Boundary Error. The interelement boundary er-
rors are approximated within each element as

Journal of Applied Mechanics

U ppa(X) == f g'(x,y)([Bul)(y)dl',
r,ur,

~- f g (x.y)([Ba])(y)dl', on Q° (26
ry

Substituting in Eq. (19) and assuming that w is the union of
various elements

and(“’)=f K(x)u' ,q(x)d Q2

-3

O°Co Q;

~- > | K® f g'(x,y)
Qcw” O s

X([Bul)(y)dQ,dT’,
Again, by Holder’s inequality [13]

K(x)u'0q(x)d 0,

27)

Fong)] = 2 1Kz, @ollle” ¥z, el o 1B ey
QCo

(28)

with 1=p,g=w, 1=p’',qg'=%, 1/p+1/gq=1, and 1/p'+1/q’
=1.

4 Error Estimation Paradigm

4.1 Selection of Norms. The proposed method for error esti-
mation requires choosing the parameters p, ¢, p’, and ¢’ with the
conditions of Secs. 3.4.1 and 3.4.2.

Generally speaking, the element Green’s function can be com-
plicated to calculate. Selecting p=1 can ease this task because if
the element Green’s function does not change sign within the
element, its L; norm equals the corresponding residual-free
bubble. Residual-free bubbles are smoother functions and are
much simpler to calculate than Green’s functions. On the other
hand, the kernel K(x) can also be a distribution or a rough func-
tion, so choosing p’=1 is also a wise selection. Sometimes, such
as when the kernel is a Dirac delta, that may even be the only
possible choice.

Therefore, for the numerical examples shown in Sec. 4.2, the
values of these parameters are

pqvpr q
1l © 1 o

4.2 The Norm of the Fine-Scale Green’s Function at the
Boundary. In Ref. [16] it was shown that the norm of the fine-
scale Green’s function g’(x,y) on I'® can be approximated to the
norm of the element Green’s function in the domain )¢ by

1 meas(I*®)
! ~ ——
lilg (X»Y)||Ll(r;)||L,(nj_)~ 5 eaS(Qe)H”ge(X,Y)|\L1(Q§)||Lr(nf,)

(29)

The factor % appears due to the splitting of the boundary residual
error, which has to be considered as a first approximation.

4.3 Error Estimation Representation. Once these param-
eters are selected, an upper bound of the measure of the error can
be estimated applying Eq. (28) and using Eq. (29)
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|F(u")] = |Finu') + Fppg(u')]
< |Fint(ul)| + |and(”’)|

= 3 Il 1

OCw
1 meas(I*¢)

* 2 meas(£)°) (30)

HHB’Z]]“Lx(F"'))

where 7{,, is an approximation of the norm of the element Green’s
function H||gg(x,y)\|Ll(Qg)|\Lx(Qc) calculated from one-dimensional
functions [14,16]. In particxular, for the advection-diffusion-
reaction equation employed in Sec. 5,

o= i e 05, 1
Joo —

la] * 8« ’|s]

being K¢ the element side length and A, the element length in
the streamline direction. Hauke et al. [16] showed that the error
involved in this approximation is small.

(31)

5 Numerical Examples

In order to validate the proposed method, the error estimator is
applied to solutions of the transport equation

Lu=a-Vu-V-(«kVu)—su=0 in Q

u=g on T,

du
Bu=k—=h onT, (32)
an

where a is the velocity field, k=0 the diffusion coefficient, and s
the source parameter.

The quantity of interest is taken as the pointwise error (8)
where the kernel is the Dirac delta distribution. Two cases are
addressed: element nodes and element centers.

(a)  Element nodes. The kernel is considered to be spread
over the four elements around the node. For the struc-
tured meshes of quads considered in this section, for each
element that includes the node

Kloo= [ k=t e
Q¢

(b)  Element centers. The kernel is considered spread over the
entire element. In this case, only one element enters into
the error estimate

KGOz, 0 = J [K(x)[dQ =1 (34)
o

These two tests give a global view of the error estimator effi-
ciency around the domain. Other quantities of interest (e.g., the
integration of the transported variable along a particular area) will
be closely related to the pointwise error distribution around the
domain.

It is also important to remark that the information required to
compute the error is minimal. In this case it is restricted to the
elements that share the point where the error is estimated. There-
fore, the computational cost of the present error estimator is very
light.
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The numerical solution is calculated using a stabilized method
[17-19]. Throughout the study, the flow time scale 7f, of the
stabilized method is evaluated as the modified Franca—Valentin
tau, 7% .., whose definition can be found in Refs. [27,28]. Also, the
streamwise element length is calculated as hﬁowzhf(/cos «, where
a is the flow angle (a=arctan u,/u,).

The error estimator of the pointwise error is applied to the
example of the square domain problem described in Ref. [29]. The
independent force term is calculated such that the exact solution is

u(x,y) = xy* — y* exp(z(x_ ])> . exp<3(y - 1))
K K
p(w) .

where the parameters are a=(2,3), s=—1, and for this case, two
values of k=107, 1 are tested.

It must be noticed that due to the synthetic nature of the solu-
tion, it is characterized by nonhomogeneous boundary conditions,
which must be calculated using Eq. (35). These values have been
imposed at the boundary nodes.

The efficiency of the absolute value of the pointwise error is
obtained at the mesh nodes and element centers. The results for
both estimations are plotted in Fig. 1 for the two considered vis-
cosities. The efficiency has been plotted as a function of the real
error F(u') in a logarithmic scale. As can be seen, the efficiencies
are close to 1 at those points where the solution is more abrupt
and the committed error is larger. This trend is encountered for all
the tests, where it is also verified that, in general, when the error is
large enough, the estimation provided by the current method is an
upper bound of the real error.

Figures 2 and 3 depict an interpolation of the local efficiencies
shown by the contour levels over the representation of the spatial
exact error distribution.

For the advective solution (Fig. 2) the error is concentrated
around the sharp gradients, which are generated at the outflow
boundary layers, for y tending to 1. The more refined the mesh is,
the less the error, although the efficiencies in those zones where
the error is large remain in values under 5.

For the diffusive solution (Fig. 3), the error is smaller due to the
smooth nature of the solution. The error is more homogeneously
distributed around the domain and again, except for those zones
where the error becomes almost null, the efficiencies take values
of between 1 and 10.

6 Conclusions

An explicit a posteriori error estimator for quantities of interest
based on linear functionals has been developed from the varia-
tional multiscale theory. The technique includes norms of both
interior element residuals and interelement residuals. The error
time scales, which also represent error constants, have been ob-
tained explicitly from element Green’s functions.

The efficiency of the method for estimating the pointwise error
at mesh nodes and element centers has been tested in advection-
diffusion-reaction problems, including advection dominated and
diffusion dominated flows. In all cases, the global efficiencies are
close to 1 when the errors are large. Furthermore, the numerical
experiments have also shown that for all the ranges of considered
parameters, the local efficiencies are a good approximation of the
true error, mainly in areas where the errors are large.

Thus, the proposed a posteriori error estimator leads to a very
economical and robust technique for transport problems computed
with stabilized methods.
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1 Introduction

Free-surface flow experiments at laboratory scales are com-
monly used for representing real problems, and they are useful in
assessing the performance of the modeling by comparing the nu-
merical predictions with the measured data. Several numerical
techniques capable of accurately representing the evolution of a
two-fluid interface can be found in the literature (e.g., see Refs.
[1-16] and references therein). Focusing on the collapse of a wa-
ter column, experiments were presented in Refs. [3,17]. This prob-
lem was adopted as a benchmark test to validate the numerical
performance of the proposed free-surface flow formulations (e.g.,
see Refs. [3,7,10-13,15]). In particular, we presented in Ref. [15]
a set of experiments and their corresponding simulation using a
fixed-mesh finite element technique. The interface is “captured”
with the edge-tracked interface locator technique (ETILT), intro-
duced in Ref. [4], using the version described in Ref. [14].

In this paper, we report results from experiments for the col-
lapse of a water column with an aspect ratio (height to width ratio
of the initial liquid column) of 2 over obstacles with different
geometries. The experimental data are used for evaluating the per-
formance of the numerical strategy presented in Ref. [14] to
model this problem. In particular, the computational parameters
involved in the formulation, originally determined by numerical
trial for the collapse of water column without an obstacle, are used
in the present analysis to evaluate their independence from the
geometry. Hence, in the present work, we test the performance of
such parameters under different conditions. The dissipative inter-
face capturing technique, used for inhibiting the formation of un-
realistic bubbles in the fluid bulk, is now tested when physical
gaps are formed, e.g., downstream of the obstacles. Moreover, the
dissipative effect of the turbulence model is also assessed.

The governing equations are presented in Sec. 2. The ETILT
and the new aspects included in its current version are summa-
rized in Sec. 3. The details of the experimental procedure are
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described in Sec. 4. Experimental and numerical results are pre-
sented and discussed in Sec. 5. Concluding remarks are given in
Sec. 6.

2 Governing Equations

The Navier—Stokes equations of unsteady incompressible flows
are written as follows:

J
pa—ltl+puV-u+Vp—V-(2,u,e)=pf in OXY (1)

V.u=0 in QXY ©)

where p, u, p, u, € and f are the density, velocity, pressure,
dynamic viscosity, strain-rate tensor, and the specific body force.
In these equations, () denotes an open-bounded domain with a
smooth boundary I', and Y is the time interval of interest. This
system of equations is completed with a set of initial and bound-
ary conditions

u=u, in Q (3)
u=g in I'yXY 4)
o-n=h in I XY (5)

where uy is the initial value of the velocity field, g represents the
velocity imposed on the part of the boundary I',, and £ is the
traction vector imposed over I, (I',UI',=I" and I',NI",=2),
typically taken as a traction-free condition: A=0.

In the present simulation, a simple model to compute the energy
dissipated by turbulent effects can be considered by replacing u in
Eq. (1) with u, defined as

pry=min( + [y pN2E: €3 i) (6)

where /,;, is a characteristic mixing length. In the present work,
Inix=C:hygn With C, being a modeling parameter, /gy a charac-
teristic element length (see Ref. [8]), and w,, is a cut-off value.
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3 Interface Update

The interface between the two fluids (Fluid 1 and Fluid 2) rep-
resents a strong discontinuity in the fluid properties and the gra-
dients of the velocity and pressure. Nevertheless, these variables
are interpolated as continuous functions across the interface.
Other types of discontinuities at the interface, e.g., surface ten-
sion, are not included in the present model. The interface motion
is governed by an advection equation

a—(P+u-ch=0 in QXY (7)
at
where ¢ is a function marking the location of the interface. In the
context of two-fluid flows, all the matrices and vectors associated
with the finite element formulation of Egs. (1) and (2) are com-
puted while taking into account the discontinuities in the fluid
properties.

In the present work, the interface is updated with the ETILT,
introduced in Ref. [4], using the version described in Ref. [14].
From here onwards we summarize the technique following the
referred work and references therein. At each time step, the den-
sity and viscosity distributions are obtained from

p'=¢"p+ (1= ¢")p, (8)

w'= @+ (1= @), 9
where ¢" is the edge-based representation of ¢. To compute ¢/,
at time level n+1, given <pZe at time level n, first a nodal repre-

sentation ¢’ is computed. This is done by using a constrained
least-squares projection as given in [9,15,16]

j W‘(¢z - (Pﬁe)dﬂ + E W‘(Xk))\pen(qoﬁ(xk) - 05) =0 (10)
Q k=1

Here ¢/ is the test function, n;, is the number of the interface
edges (i.e., the edges crossed by the interface regardless the prob-
lem dimension), x; is the coordinate of the interface location
along the kth interface edge, and A, is a penalty parameter. After
this projection, we update the interface by using a discrete formu-
lation of Eq. (7)

9 h el
J «/f*(iwh-w)dm}) (rsupu” - Vo)
QO

ot e=1 J (O°

9 h el
X<i+uh-V<ph)dQ+E Vi vpe V @"'dQ =0

ot e=1 J e

(11)

Here n,, is the number of elements, 7gpg is the streamline upwind
Petrov—Galerkin (SUPG) stabilization parameter [8], and vpcyp i8
the discontinuity-capturing interface dissipation (DCID) param-
eter

o8 i —[IVe"lhyon
Vpeip = Eh%]Gszs:sgo—f
Ie:

Here C; is a discontinuity-capturing constant and ¢, is a refer-
ence value, here set to 1. We note that the justification behind the
expression given by Eq. (12) is combining some of the features
we see in Eq. (7) and the discontinuity-capturing directional dis-
sipation (DCDD) given in Ref. [8]. In time integration, <pZ+l is
computed from Eq. (11) by using the Crank-Nicholson scheme.
From QDZ +1 We obtain (pﬁf;l by a combination of a least-squares
projection and corrections to enforce volume conservation for
chunks of Fluid 1 and Fluid 2 (see Ref. [15] for more details).

(12)

4 Experimental Procedure

In the present work, a simple experimental setup was built to
obtain experimental data that the numerical results to be presented
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Fig. 1 Schematic representation of the physical models (a)
and geometry of obstacles ((b)(1) square section and (b)(2)
trapezoidal section)

in Sec. 5 can be compared with. The apparatus, shown in Fig. 1,
consists of a glass box with its two parts delimited by a gate with
a mechanical release system. The left part of the box is initially
filled with colored water. Only experiments with a column aspect
ratio of A,=2 (A,=H/L, with H and L being the initial height and
width of the column, respectively, with L=0.114 m) are pre-
sented. An obstacle is placed at 3/2L from the gate. The obstacles
with different geometries are also shown in Fig. 1.

Different experiments were carried out and videotaped. To mea-
sure the interface position, a ruler with tics 0.02 m apart is drawn
surrounding the box and over the frame of the gate. A red marker
that jointly moves with the gate helps to observe its position dur-
ing the gate opening. The measurements reported in the present
work are average values from the measurements registered for a
minimum of five experiments. The maximum experimental errors
in space and time are estimated as =0.005 m and *=0.025 s, re-
spectively.

The observed evolutions of the interface at the left and right
walls of the box and in a vertical section in the middle of the
obstacle are presented in Sec. 5 together with the corresponding
numerical predictions.

5 Comparison of Numerical and Experimental Results
for A,=2

In this paper, the numerical simulations are focused on the
long-term transient behavior for the collapse of the water column
described in Sec. 4. In the simulations, the liquid column is ini-
tially at rest and confined between the left wall and the gate. The
pressure is set to zero at the top of the rectangular computational
domain. Slip conditions are assumed at the solid surfaces. The
mesh is composed of 100X 75 four-noded elements. The time-
step size is 0.001 s. The fluid properties are p;=1000 kg/m? and
11=0.001 kg/ms~! for the water, and p,=1 kg/m> and u,
=0.001 kg/m s~! for the air.
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(b)

Fig. 2 Experimental and computed interfaces at different in-
stants for the obstacle with a square cross section. Experimen-
tal and computed interfaces at different instants for the ob-
stacle with a square cross section.

Two simulations are carried out: Simulation 1 and Simulation 2.
In Simulation 1 the gate is assumed to be suddenly removed at
time =0 s, while in Simulation 2 the gate is opened not instan-
taneously but with a finite speed. The opening speed was extracted
from the experiments. In Simulation 2, an average opening speed
of 0.35 m/s is used. Both simulations include a simple turbulence
model defined by Eq. (6) with C,=3.57 and g, =3.0 kg/m s~
Moreover, they also both have the DCID defined by Eq. (12) with
C,=10.

We note that all the parameters and properties used in these
simulations come from the simulations reported in Ref. [15] for
cases without obstacles.

5.1 Obstacle With Square Cross Section. The interface po-
sitions at different instants of Simulation 2 are shown in Fig. 2,
together with the corresponding images from the experiment.
Since no special model is included to capture the bubbles or
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(a), section at middle of the obstacle (b), and the right wall (c)

drops, the numerical solutions are expected to represent the free
surfaces of the fluid bulk in an average sense. As it was reported
in Ref. [15], formation of unrealistic bubbles in the fluid bulk is
inhibited when the DCID is activated. The results obtained from
the present simulations show a satisfactory DCID performance
when physical gaps develop in the fluid motion, i.e., those that
appear at the back of the obstacles are not removed. The volume
of such a gap is not necessarily conserved because the local vol-
ume conservation is not activated. Furthermore, we believe that
the turbulence model used in the simulations is responsible for the
more diffusive behavior exhibited by the numerical predictions in
comparison with the experiment. Nevertheless, as it is reported
below, there is a reasonably good agreement in representing the
evolution of the interface.

Figure 3 shows, for the experiment and Simulations 1 and 2, the
evolution of the dimensionless interface vertical position (y/L, y
being the instantaneous interface vertical position) at the left wall,
middle section of the obstacle, and the right wall. The numerical
results show trends similar to those obtained from the experiment.
Simulation 2, which has a finite gate opening speed, better repre-
sents the interface evolution at all the measurement sections. In
particular, the train of waves is captured. The computed vertical
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Fig. 4 Experimental and computed interfaces at different in-
stants for the obstacle with a trapezoidal cross section. Experi-
mental and computed interfaces at different instants for the
obstacle with a trapezoidal cross section.

position of the interface is lower than those obtained in the ex-
periment. Compared with the measurements, while the interface
evolution is advanced in time at the left wall and the middle
section of the obstacle, it is delayed at the right wall. However, the
magnitude of first maximum along the right wall is properly rep-
resented.

5.2 Obstacle With Trapezoidal Cross Section. Figure 4
shows the interfaces at different instants of Simulation 2 and the
corresponding images from the experiment. As it was mentioned
above, the parameters used in these simulations come from earlier
simulations for cases without obstacles. Although at certain in-
stants the free surface exhibits a more diffusive behavior, which
can be attributed to those parameters, a reasonably good agree-
ment between the numerical and experimental results is seen par-
ticularly for this case. It can be appreciated that the trapezoidal
obstacle does not perturb the flow as much as the obstacle with a
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square cross section.

Figure 5 shows, for the experiment and Simulations 1 and 2, the
evolution of the dimensionless interface vertical position at the
left wall, middle section of the obstacle, and the right wall. In this
case, the results obtained with Simulation 2 are in reasonably
good agreement with the experimental data. The computed verti-
cal position of the interface at the left wall practically coincides
with the experimental result. The first and second maxima are well
represented not only in time but also in magnitude. The numerical
behavior of the interface vertical position at the middle of the
obstacle also shows good agreement with the experimental results.
Although the time at which the interface reaches the right wall is
slightly delayed, after that point in time the computed interface
vertical position at the wall captures reasonably well the experi-
mental interface evolution.

6 Conclusions

The performance of the ETILT was assessed in the simulation
of the collapse of a water column over an obstacle with two dif-
ferent geometries. A set of experiments has been carried out to
videotape the evolution of the interface.
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Simple concepts were included in the model to describe the
turbulence effects. The parameters used for characterizing the wa-
ter behavior were taken from earlier simulations for cases without
obstacles. In principle, the values of the properties and parameters
could be determined from the present cases of study. Nevertheless,
due to the highly complex flow patterns present in the cases with
obstacles, the objective function to be minimized could include
not only the evolution of the interface position at certain sections
of control but also other aspects, e.g., evolution of the air gaps.
The characterization of this last aspect is not straightforward.
Moreover, the present numerical model is able to capture the for-
mation of the air gaps in an average sense. Hence, we prefer to
use the values we set in cases without obstacles. In addition, the
results computed with the chosen set of parameters match particu-
larly well the interface evolution obtained for the obstacle of trap-
ezoidal section (which is less dissipative than that with the square
obstacle). Therefore we accept that their values can be used to
describe the water behavior in the present analyses. In general,
maximum water heights and their times of occurrence as well as
the time of impingement on the walls and the wave formation are
captured reasonably well. The results obtained also demonstrate
an acceptable performance from the DCID; e.g., it does not inhibit
the gaps that are physical. The effect of the gate opening was
found to change the overall behavior of the interface for the range
of gate opening speeds considered.

The experimental observations do not exhibit a remarkable 3D
behavior. Therefore, a 2D simulation should properly capture the
overall flow patterns. Moreover, the experiments exhibit a turbu-
lent response particularly at instants of liquid splashing over walls
and obstacles. In the 2D simulations performed in this work, the
turbulence model is basically needed to adequately describe the
time of liquid impingement over walls and obstacles as well as to
reproduce maximum liquid levels and periodicity of waves. The
turbulence model adopted depends on the mesh size; hence, its
influence decreases when finer meshes are used. However, it helps
to include turbulence dissipation effects when we are not carrying
out a direct simulation of the turbulent scales.

Overall, the numerical results compare satisfactorily with the
data from the experiments.
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Methods for the Schrodinger
Wave Equation

This paper presents two stabilized formulations for the Schrodinger wave equation. First
Sformulation is based on the Galerkin/least-squares (GLS) method, and it sets the stage
Jfor exploring variational multiscale ideas for developing the second stabilized formula-
tion. These formulations provide improved accuracy on cruder meshes as compared with
the standard Galerkin formulation. Based on the proposed formulations a family of tet-
rahedral and hexahedral elements is developed. Numerical convergence studies are pre-
sented to demonstrate the accuracy and convergence properties of the two methods for a
model electronic potential for which analytical results are available.
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Sformulations

1 Introduction

The density functional theory (DFT) provides a framework for
the calculation of mechanical and electronic properties of materi-
als. Through DFT, the solution of the many-body electronic-
structure problem is reduced to a self-consistent solution of the
single particle Schrodinger equation. A good overview of the DFT
method is presented in Refs. [1,2] and references therein. The
time-independent ~ Schrodinger equation, termed as the
Schrodinger wave equation (SWE), is a quantum mechanical
equation, which is used to determine the electronic structure of
periodic solids. SWE has a differential form that involves continu-
ous functions of continuous variables and is therefore suitable for
the application of variational methods to the study of electronic
properties of periodic materials. The eigensolutions of SWE cor-
respond to different quantum states of the system. Various numeri-
cal approaches [2-5] have been adopted for the solution of SWE
that include finite element [6-9] and finite difference methods
[10,11]. The advantages and utility of finite element method over
ab initio methods is discussed in detail in Ref. [7].

In this paper we explore two variational formulations for SWE.
Our objective is to study the convergence properties of the finite
element methods based on the proposed variational formulations
where we have employed lower-order standard Lagrange interpo-
lation functions. We are motivated by the notion of subgrid scale
methods [12,13], which in the present context can help in an ac-
curate calculation of higher eigenvalues in the system. Stabilized
methods based on variational multiscale ideas, when applied to a
number of physical phenomena [14-18] have shown higher accu-
racy on cruder discretizations as compared with the corresponding
standard Galerkin formulations.

An outline of the paper is as follows. Section 2 presents the
Schrodinger wave equation and its standard Galerkin form. Sec-
tion 3 presents the GLS formulation for SWE. Section 4 develops
a stabilized formulation that is motivated by the variational mul-
tiscale ideas. Section 5 presents results that demonstrate the accu-
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racy and convergence properties of the methods for a model prob-
lem (Kronig-Penney problem) for which analytical results are
available. Conclusions are drawn in Sec. 6.

2 The Schrodinger Wave Equation

Let () C R”sd be an open bounded region with piecewise smooth
boundary I'. The number of space dimensions ng=3. The
Schrédinger wave equation can be written as

- kAv(r) — 2xk - Vo(r) + kk’v(r) + Vr)u(r) = e(k)o(r) in Q

(1)

The solution of the SWE satisfies Bloch’s theorem of periodicity
of the wave function. From the periodicity condition, the bound-
ary conditions are taken to be of the form.

v(r)=v@r+R) on T (2)

n-Vor)=n-Vo(r+R) on T (3)

where v(r) is the complex valued cell periodic function or the
unknown complex scalar field, namely, the wave function (or the
eigenfunction) r represents the position vector, n represents the
outward unit normal vector to the boundary I' of a unit cell, V(r)
is the electronic potential or the potential energy of an electron in
a charge density p(r) at the position r and is considered periodic
over a unit cell, and i is the imaginary unit. e(k) is the eigenen-
ergy associated with the particle as a function of wave vector
(position vector in reciprocal space) k. R refers to the lattice vec-
tors of the unit cell, and xk=#%/2m and #=h/2 are constants,
where h is Planck’s constant and m is the effective mass of elec-
tron.

Remark 1. The values of V(r) and v(r) in a periodic solid are
completely determined by their values in a single unit cell. There-
fore solutions of the Schrodinger equation in a periodic solid can
be reduced to their solutions in a single unit cell, subject to peri-
odic boundary conditions consistent with Egs. (2) and (3), respec-
tively.

2.1 The Standard Weak Form. Let VC H'(€"sd) N CO(€)"sd)
denote the space of trial solutions and weighting functions for the
unknown scalar field where periodicity of the boundary condition
is embedded in the admissible space.
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V={vjv e H(Q™), v(r)=v(r+R)}, Vrel (4)
The standard weak form for the complex valued problem is
— (w,i2kk - Vv) + (Vw,k V v) + (w, (k> + V)v) = (w,ev)  (5)

where w is the weighting function for v, and (-,-)=[q(-)dQ, i.e.,
L, product of the indicated arguments over domain ). Discretiza-
tion of the standard weak form gives rise to a generalized eigen-
value problem for the complex valued cell periodic function or the
eigenfunction »(r) and the associated eigenenergy (k).

Remark 2. Galerkin method seems to work for the present prob-
lem, however typical applications in the literature have been pre-
sented in the context of hermite cubic functions [6,7]. Employing
lower-order Lagrange shape functions in the standard Galerkin
formulation results in reduced accuracy in the evaluation of higher
eigenvalues in the system.

Remark 3. Our objective in this work is to explore numerical
methods that can provide higher accuracy in the estimation of
higher eigenvalues, while using lower-order Lagrange shape func-
tions on computational domains that are less dense than the grids
employed for the corresponding Galerkin method.

3 The Galerkin/Least-Square Stabilized Form

This section presents the GLS form for the Schrodinger wave
equation. GLS stabilization is a standard technique employed in
computational fluid dynamics to enhance the stability of the un-
derlying Galerkin variational formulations, which also manifests
itself in terms of improved accuracy on relatively cruder discreti-
zations. The basic idea of stabilized methods is to add a least-
squares form of the Euler-Lagrange equations to the standard
Galerkin form presented in Eq. (5), thus strengthening the varia-
tional structure of the problem.

(Vw,k Vv) = (w,i2kk - Vo) + (w,(kk*> + V= €)v) + ((— kKA
—i2kk -V + kk* + V)w, 79[ (= kA — 2k - V + kK> + V
-g)v])=0 (6)

In Eq. (6) we have used the idea of Petrov—Galerkin methods and
have dropped the & term in the weighting function slot of the
additional stabilization term. This helps in reducing the order of
the resulting eigenvalue problem from quadratic to linear. In Eq.
(6) 795 is the stabilization parameter that will be defined later.

Remark 4. The GLS method is shown to yield higher accuracy
for many physical problems [12,19] and in the present case it sets
the stage for exploring the variational multiscale ideas for appli-
cation to SWE.

4 The Variational Multiscale Method

This section develops and explores the properties of another
stabilized method that finds its roots in the variational multiscale
method proposed by Hughes [12] and we term it as the Hughes
Variational Multiscale (HVM) form. The basic premise of multi-
scale approach is to acknowledge the presence of the fine-scales
that may not be resolved by a given spatial discretization. We
consider the bounded domain () to be discretized into nonover-
lapping regions ¢ (element domains) with boundaries I'¢, e=1,
and 2 *nyye such that Q= UZ;T"'(_I‘*. We denote the union of el-
ement interiors and element boundaries by ()" and I"'. respec-
tively, ie., Q'=UJuwel(int)Q)¢ (element interiors) and I
=U/umel[¢ (element boundaries) We assume an overlapping sum
decomposition of the scalar field v(r) into coarse- or resolvable-
scales and fine- or the subgrid-scales.

v(x)=0(x)+v'(x) (7)

Likewise, we assume an overlapping sum decomposition of the
weighting function into the coarse- and the fine-scale components,
respectively.

021203-2 / Vol. 76, MARCH 2009

w(x) =w(x) +w'(x) (8)

We further make an assumption that the subgrid scales, although
nonzero within the elements, vanish identically over the element
boundaries, i.e., v'=w'=0 on I'".

We now introduce the appropriate spaces of functions for the
coarse- and fine-scale fields and specify direct sum decomposition
on these spaces, i.e., V=V@®)V’ where V is the space of trial so-
lutions and weighting functions for the coarse-scale field and is
identified with the standard finite element space, while V' is the
space of fine-scale functions. These spaces are subject to the re-
striction imposed by the stability of the formulation that requires
VY and V' to be linearly independent.

4.1 The Multiscale Variational Problem. We now substitute
the trial solutions (7) and the weighting functions (8) in the stan-
dard variational form (5), which yields

—w+w,i2kk-Vo+v")+(Vw+w'),«V(@o+v"))+(w
+w (k> + V)@ +0v")=(w+w,e(T+v")) 9)

With suitable assumptions on the fine-scale field (i.e., fine-scales

vanish at the interelement boundaries) and employing the linearity

of the weighting function slot, we can split the problem into

coarse- and fine-scale parts, indicated as ¥V and W', respectively.
The coarse-scale problem W,

—(Wi2kk - V(@ +0v") + (Vo,k V(@ +0")) + (W, (k> + V) (0
+v'))=(w,e(@+0")) (10)
The fine-scale problem W',
— (W, 2kk -V(@+0")+ (VW' k V@ +0v")+ (W', (k> + V)@

(11)

The underlying idea at this point is to solve the fine-scale problem
(11), which is defined over the sum of element interiors, to obtain
the fine-scale solution v’. This solution is then substituted in the
coarse-scale problem given by Eq. (10), thereby eliminating the
fine-scales, yet retaining their effect.

+v'))=(w'",e(v+v"))

4.2 Solution of the Fine-Scale Problem (W'). Employing
linearity of the solution slot in Eq. (11), applying integration by
parts, and rearranging terms, the fine-scale problem reduces to

- (W’,l.ZKk . VU’)Q! + (VW’,KV U’)Qr + (W’,(Kk2 + V)U’)Qr
— (W' ev)q =W ,i2kk - VT + kAT — (kK> + V)T + D)y
(12)

From Eq. (12) one can see that the fine-scale problem is driven by
the residual of Euler—Lagrange equations of the coarse scales de-
fined over the sum of element interiors. Without loss of generality,
we assume that the fine-scales v’ and w' are represented via
bubbles over element domains, that is,

on ()° (13)

(14)

v'[qe=biv;

w' |Qe = bSW; on °

where b{ and b5 represent the bubble shape functions, and v, and
w, represent the coefficients for the fine-scale trial solutions and
weighting functions, respectively. Substituting Egs. (13) and (14)
in the fine-scale problem (12) we get
— (bSw),i2uk - VDv)) qr + (VDsw), . V v ) o + (D5w), (kK
+V)bv)) — (b5w),ebiv))qr = (b5w),i2kk - VU + kAD
—(Kk2+V)l7+ 817)9/ (15)

Taking the constant coefficients w, and v, out of the integral
expressions and employing arbitrariness of w/, we can solve for
the fine-scale coefficients v,.
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, —1(b8, (- kA — 2Kk -V + kK> + V= 8)0) s
e T (VbS KV b) o + (0% (= 20k - V + kK2 + V= £)5) oy ]
(16)

We can now reconstruct the fine-scale field via recourse to Eq.
(13). In order to keep the presentation simple, and for the case
where the residual of the coarse scales over element interiors can
be considered constant, we can simplify fine-scales v’(x) as fol-
lows:

v'(x) == (- kA - 2k - V + kk> + V - )] (17)

Within the context of stabilized methods, 7 is defined as the sta-
bility parameter. In the derivation presented above 7 has an ex-
plicit form

T=b¢ J SAQ[(VBS, kV bS) gy + (b5, (= i2uk - V + kk* + V
°

—e)ba ™! (18)

Remark 5. In our numerical calculations we have simplified the
definition of 7 by setting £=0 in Eq. (18).

Remark 6. The definition of the bubble functions completely
resides in the definition of the stability parameter 71VM. Conse-
quently, a choice of specific bubbles only affects the value of
VM Stabilization parameters that are based on element-level
matrices and element-level vectors have also been used in the
Streamline Upwind Petrov—Galerkin (SUPG) and GLS methods
[19].

4.3 The Coarse Scale Problem (W). Employing linearity of
the solution slot in the coarse-scale subproblem (10) and applying
integration by parts, one can combine v’ terms as

—(w,i2kk - Vo) + (Vw,k VO) + (W, (kk> + V— €)D) + ((i2xk - V
- KA+ k> +V—-e)Ww,0')=0 (19)

Substituting v’ from Eq. (17) in Eq. (19) yields the resulting sta-
bilized formulation.

(Vw,k V§) — (w,i2kk - VD) + (W, (kk> + V= ¢)D) — ((— kKA
+ 26k -V + kk>+V—e)w, (- kA -2k -V + kk> +V
-g)0])=0 (20)

4.4 The HVM Stabilized Form. The HVM stabilized form
(20) is completely expressed in terms of the coarse or resolvable-
scales. Therefore, in order to keep the notation simple we drop the
superposed bars and we write the resulting form as

(Vw,k Vv) = (w,i2xk - Vv) + (w, (kK> + V= &)v) = (- kA
+2kk -V + kk>+V—e)w, 1 (— kA - i2kk - V + k> + V
-g)v])=0 (21)

Remark 7. The first three terms in Eq. (21) are the standard Galer-
kin terms. The fourth term has appeared due to the assumption of
the existence of fine-scales. This term is not present in the stan-
dard Galerkin formulation.

Remark 8. The subgrid scales are proportional to the residual of
the coarse scales as shown in Egs. (12) and (17), i.e., it is a
residual based method and therefore satisfies consistency ab initio.

Remark 9. When compared with the standard Galerkin method,
the multiscale approach involves additional integrals that are
evaluated elementwise and represent the effects of the subgrid
scales that are modeled in terms of the residuals of the coarse
scales of the problem.

Remark 10. For the numerical solution of the variational prob-
lem where the periodic Dirichlet and Neumann boundary condi-
tions presented in Egs. (1) and (2) are already embedded in Eq.
(21), we employ the procedure outlined in Refs. [6—8] and modify
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Fig. 1 A family of 3D linear and quadratic elements

element connectivity to produce value-periodic basis functions.

4.5 Quadratic Eigenvalue Problem for the HVM Form.
The solution procedure for the HVM form (21) involves a qua-
dratic eigenvalue problem described as follows:

(M +eC+K)x=0 (22)

where M, C, and K are n X n matrices, ¢ is the scalar eigenvalue,
and x is the eigenvector. In order to solve this problem one has to
linearize it as follows:

Az=¢Bz (23)

A= , B= , and z= (24)
-K -C oM ex

Remark 11. The HVM eigenvalue problem increases the size of
the matrices from n X n to 2n X 2n, which also increases the cost
of computation.

where

S Numerical Examples

Figure 1 shows a family of 3D elements that consist of 4- and
10-node tetrahedra and 8- and 27-node brick elements for the
numerical solution of the problem. In the numerical tests pre-
sented in this section, the functional form of 795 is taken to be
the same as that of 705, which is defined in Eq. (18). The bubble
functions employed for the evaluation of 7 are at least one order
higher than the functions employed for the complex valued wave
function. Accordingly, quadratic and cubic bubble functions were
used for the 8-node and 27-node brick elements, respectively. In
the case of both linear and quadratic tetrahedral elements, qua-
dratic bubbles were used as this bubble function enriches the
space of functions in both the cases.

We present the convergence study for the 3D generalized
Kronig—Penney problem. The domain under consideration is a
cube with electronic potential V(r) given by

V(r)=Vipx) +Vip(y) + Vipz) in Q (25)

where

Vv =
10(s) {6.5 Ry 2=s<3 au.

Figures 2-9 present convergence rates for the fractional error in
the first, fifth, and seventh eigenvalues for the Galerkin, GLS, and
HVM methods with linear and quadratic shape functions at a se-
lected but otherwise arbitrary k point. The theoretical convergence

0=s<2 a.u.}
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Fig. 2 Convergence rates for eigenvalues using linear brick
elements (GLS)

rate for the eigenvalues for linear and quadratic elements is k+1,
where k is the order for the interpolation of the complex valued
wave function v. Computed rates corroborate the theoretical pre-
dictions [20]. In each of the test cases the L, error in the computed
eigenvalues is smallest for the first eigenvalue and it successively
increases for the higher eigenvalues. In these test cases Galerkin
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Fig. 3 Convergence rates for eigenvalues using linear tetrahe-
dral elements (GLS)
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Fig. 4 Convergence rates for eigenvalues using quadratic
brick elements (GLS)
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Fig. 5 Convergence rates for eigenvalues using quadratic tet-
rahedral elements (GLS)

solution is the least accurate for any given mesh.

5.1 Convergence Rate Results for the GLS Stabilized
Formulation. Figures 2—5 show convergence properties for the
GLS method. Meshes employed for the linear elements are com-
posed of 4 X4 X4, 8§ X8X8, and 12X 12X 12 elements, while
meshes employed for the quadratic elements are composed of 2

-0.2
—&— Brick-Gal-E1
04 + —=2— Brick-Gal-E5
—&— Brick-Gal-E7
06 + —&— Brick-HVM-E1
—A — Brick-HVM-E5
08 L —e— Brick-HVM-E7

Log((Epen-E,)E,)
=

L4 T k=(2/3,1/2,2/5)7/2 XS 188

16 & nonuniform mesh 199
Linear C° elements

-1.8 £~ . . : : :
0.3 0.4 0.5 0.6 0.7 0.8 0.9

Log(1/h)

Fig. 6 Convergence rates for eigenvalues using linear brick
elements (HVM)
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Fig. 7 Convergence rates for eigenvalues using linear tetrahe-
dral elements (HVM)
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Fig. 8 Convergence rates for eigenvalues using quadratic
brick elements (HVM)

X2X2,4X4X4,and 6 X6 X6 elements. Figures 2 and 3 show a
quadratic convergence rate for the computed eigenvalues for lin-
ear elements, while cubic convergence rate is attained for the qua-
dratic elements, as shown in Figs. 4 and 5. In all the cases al-
though there is no increase in convergence rates for the GLS
stabilized method as compared with the standard Galerkin
method, the results clearly show that the GLS eigenvalues are
more accurate than those obtained via the standard Galerkin
method.

5.2 Convergence Rate Results for the HVM Formulation.
Figures 6-9 show convergence rates for the HVM method.
Meshes employed for the linear elements are composed of 6 X6
X6, 9X9X9, and 12X 12X 12 elements, while meshes em-
ployed for the quadratic elements are composed of 2X2 X2, 4
X4 X4, and 6 X6 X6 elements. Once again optimal convergence
rates are attained in all the test cases.

5.3 Energy Band Diagram. Figures 10 and 11 show the ei-
genvalues computed via the GLS and the HVM formulations for
the 4 X 4 X 4 quadratic brick mesh. Solid lines show the analytical
solution and the circles correspond to the computed values. Any
interested reader is referred to Chapters 2 and 3 of Ref. [21] for a
description of the band diagram and the Brillouin zone. In case of
Kronig—Penney problem, the first Brillouin zone is a cube of
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Fig. 9 Convergence rate for eigenvalues using quadratic tet-
rahedral elements (HVM)

Journal of Applied Mechanics

=

Z 10+

&

>

on

b5}

s 8% s A = . ' ] A

— . —
—— —a
e e 1

Solid lines represent exact eigenvalues
Symbols represent computed eigenvalues

TS = e . ° o

2 L y ' y | y y ' y y
T t T t

r Wave Vector (k) X

Fig. 10 Energy band diagram for the GLS formulation

~ v v v L Z——
g7
>
20
E 8 + R R N & i A A
e—— L
s . . g
%1
Solid lines represent exact eigenvalues
4l Symbols represent computed eigenvalues
2 + f t + + t t t + +
T Wave Vector (k) X
Fig. 11 Energy band diagram for the HVM formulation

length 27r/3. In Fig. 10 I' represents the center of the first Bril-
louin zone and X represents the center of the face of the first
Brillouin zone with unit normal vector (1,0,0).

5.4 Convergence Rate for a High Value of the Electronic
Potential. The range of values for the pseudopotential typically
lies between —60 Ry and —10 Ry units. Therefore tests were
carried out to see the effects of higher values of the potentials.
Figures 12-19 show convergence of the fractional error in the
eigenvalues for V=60.5 Ry. Meshes employed for the present
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Fig. 12 Convergence rates for eigenvalues using linear brick
elements (GLS)
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Fig. 15 Convergence rates for eigenvalues using quadratic
tetrahedral elements (GLS)

study are the same as the ones used in Secs. 5.1 and 5.2. Once
again optimal rates in the norms considered are attained for the
various test cases. The normalized error for Galerkin method is
higher even for the first few eigenvalues, as compared with the
GLS and the HVM methods.
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Fig. 18 Convergence rates for eigenvalues using quadratic
brick elements (HVM)

6 Concluding Remarks

We have presented two finite element formulations for the so-
lution of the Schrdinger wave equation: (a) the GLS formulation
and (b) the HVM formulation. The GLS formulation when re-
duced to the standard eigenvalue problem, yields solution at a
computational cost that is comparable to that of the Galerkin
method, however with higher accuracy in the evaluation of the
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Fig. 19 Convergence rates for eigenvalues using quadratic
tetrahedral elements (HVM)

higher eigenvalues as compared with the Galerkin method. The
HVM formulation also yields optimal convergence rates; how-
ever, it leads to a quadratic eigenvalue problem that adds to the
cost of computation. The numerical convergence rates of the
methods are investigated via the Kronig—Penney problem that
serves as a benchmark test case for investigating the mathematical
properties of the methods. The quadratic elements show a substan-
tial gain in accuracy as compared with the 3D linear elements.
Among the quadratic elements, quadratic bricks show better accu-
racy as compared with the quadratic tetrahedral element.
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In this paper we present effective preconditioning techniques for solving the nonsymmet-
ric systems that arise from the discretization of the Navier—Stokes equations. These linear

systems are solved using either Krylov subspace methods or the Richardson scheme. We
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1 Introduction

Increased emphasis on modeling of fluid-structure interaction
(FSI) problems in recent years (see, for example, Refs. [1-36])
generated renewed interest in robust and efficient iterative solu-
tion techniques (see, for example, Refs. [12,13,30,37,38]) for the
linear systems encountered in the computation of incompressible
flows. These linear systems of equations can be written in the
following general 2 X 2 block form:

A B |lu f
EMIHEY
CcC' D||p g
where A € R"*" is nonsymmetric, B,C € R**™, and D e R"™*™,
with m<n.

In this paper we study two model problems from incompress-
ible flows: steady-state solution of lid-driven cavity flow and
time-accurate solution of parachute problems.

The linear systems considered for the steady-state case are ob-
tained from the 1FISS [39] package for handling driven cavity
problems (Oseen equations). The spatial discretization is based on
the O,/Q; element, and the linear systems are derived after one
nonlinear Picard iteration. This results in the following saddle-
point problem:
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steady-state solutions. We also compare our solvers with those published previously.
[DOL: 10.1115/1.3059576]

o]l

We note that solving Eq. (2) via a Krylov subspace method with a
diagonal or incomplete LU factorization preconditioner is either
not possible or inefficient. An alternative approach is to use a
block-diagonal or block LU factorization based preconditioners.
Such preconditioners require the solution of linear systems involv-
ing the Schur complement, G=BTA™!B, which is often expensive
to form.

For systems in which A is not far from being symmetric, Golub
and Wathen [40] introduced the idea of using

A, B
Mz[B‘T 0] 3)

as a preconditioner, where A,=(A+AT)/2 is the symmetric part of
A. Baggag and Sameh [37] extended this approach by introducing
an inner Richardson iteration that gives excellent convergence
rates for the inner-outer scheme, where the systems involving the
Schur complement of the symmetric preconditioner are solved
iteratively. A different approach for approximating the Schur
complement matrix was introduced by Elman in Ref. [41]. In
Elman’s preconditioner, the action of G™! is approximated by

(B"B)"'B"AB(B"B)™! (4)

thus avoiding solving systems involving G.

The linear systems considered for the time-accurate solution
cases are obtained from parachute aerodynamics computations
[35] and are of the form given by Eq. (1). The linear systems
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Fig. 1

tested were extracted from the first and fifth (last) nonlinear
Newton—Rhapson iterations at a given time step of a computation
with the fluid mechanics part of the SSTFSI-TIPI technique (see
Remarks 5 and 10 in Ref. [30] for this specific version of the
stabilized space-time fluid-structure interaction (SSTFSI) tech-
nique). The nominal diameter of the parachute, which is held rigid
during the computation, is about 120 ft (~36.6 m). The descent
speed is 25 ft/s (~7.6 m/s), the air is assumed to have standard
sea-level properties, and the Reynolds number is 1.8446X 107.
The time-step size is 0.116 s, and the flow is fully developed.
Figure 1 shows the flow field.

2 Algorithms

Throughout this paper we use the term relative residual (or
rel.res.) for ||rlle/||roll-- Where ry is the residual at the kth iteration.

2.1 Steady-State Case

2.1.1 BFBT Preconditioner. The BFBT (BFBT)preconditioner
was introduced in Refs. [41,42] and later studied in Refs. [43—45].
It has the following block upper triangular form:

A B
M=y & )

where G is an approximation to the Schur complement matrix G.
Let us assume that we would like to solve systems of the follow-
ing form:

B'A™'Bz=1 (6)
Let
u=A"'Bz (7)
then
Blu=t ()
and the general solution of Eq. (8) can be written as
u=B(B"B)'t+ (I- B(BTB)"'B")v 9)

where v is arbitrary. Considering only the particular solution, we
obtain

u=B(B'B)™ 't (10)

021204-2 / Vol. 76, MARCH 2009

factor 4 via MKL-PARDISO;
form BT B;
factor BY B via MKL-PARDISO;

solve [ ;T g ] [;] = [£ ] via BiCGStab

(rel.res. < gy,) with preconditioner M =

where G—! = (B B)~'B 4B(B"B)~!

0 —G];
A4 a
solveM[W] =1p

compute w= —(B"B)~' BT AB(B" B)~'b (solve
(BTB)x =y via MKL-PARDISO);
solve Av = a — Bw via MKL-PARDISO;

end
end

Fig. 2 BFBT preconditioner

From Egs. (7) and (10) we get

A7'Bz=B(B"B)™ 't (11)
and
z=(B"B)"'BTAB(BB)™ 't (12)
Therefore, an approximation of G™! can be written as
~'=(B"B)"'B"AB(B"B)™' (13)

We note that the action of G~ on a vector & can be realized by
(B"B)""(B"AB)(B"B)"'h (14)
The BFBT algorithm is implemented as described in Fig. 2. The

outer Krylov subspace method is BiCGStab [46], and the factor-
ization of A and (B"B) is done only once via MKL-PARDISO [47].

2.1.2  Symmetric Nested Scheme. Let A;=(A+AT)/2, and con-
sider the following splitting of A, [48]:

A,=R+0 (15)

where R contains the positive off-diagonal elements of A; and Q
contains the diagonal and negative off-diagonal elements of A,.
Let

A;=R+0Q (16)

in which R is the diagonal matrix for which Re=Re, where e’

=[1,1,...,1]. AS is thus a Stieltjes matrix. The nested scheme we
propose consists of an outer BiCGStab iteration for solving Eq.
(2), where the preconditioner given by Eq. (3) is solved by one
step of a Richardson iteration. The preconditioner for the Richard-
son iteration is

N A B |
vi=| (17)
BT 0 |
To solve systems involving M R
M[ v ] [a | (18)
wl |b )
consider the block LDU factorization of M R
A 0l|A" O ||4A B
p=|% X . A (19)
BT I 0 -G |Lo 1

Solving systems involving A, is done directly via MKL-PARDISO,

and solving systems involving the Schur complement G is done
via the conjugate gradient (CG) method. In the CG scheme,

matrix-vector products with G are achieved by first multiplying
with B, solving a system involving A s Via MKL-PARDISO, followed
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form fls and factor it via MKL-PARDISO;

AB|llu| _|f] .. ¢
solve {BT 0] pl = {g via BiCGStab

(rel.res. < €,,,) with preconditioner M = {

§ .
B O}
where 4, = (4+47)/2;
solve Mz = r via one step of Richardson
Zkpt =2+ M (r = Mzg) 5

o | As B,
where M = Bl ol

solve M [:}} = {Z}
solve A,v = a via MKL-PARDISO;
solve Gw = Bv— b via CG with rel.res. < 8,.(,,])
(Whereﬂ G =B"4;'B);

solve A,v = a — Bw via MKL-PARDISO;
end

end
end

Fig. 3 Symmetric nested preconditioner

by a multiplication with BT. We note that with this scheme we
have three levels of nested iterations, as seen in Fig. 3.

2.1.3 Nonsymmetric Nested Scheme. The nonsymmetric
nested preconditioner has outer BiCGStab iterations for solving
Eq. (2), and the preconditioner is the coefficient matrix itself. The
systems involving the preconditioner M,

wl b
are solved by first forming the block LDU factorization
A 0f|lA" o0 ||A B
M=\ . (21)
B I 0 -GJ[O0 T

Solving Eq. (20) requires solving systems involving A and G.
Here, systems involving A are solved via MKL-PARDISO, while
those involving G are solved via restarted GMRES(100) [49]. A de-
scription of this nonsymmetric scheme is given in Fig. 4.

2.2 Time-Accurate Solutions. Here, the linear systems are
obtained from the first and fifth (last) nonlinear iterations of a
parachute simulation. A is of order 697,440 and B has 121,370
columns. ILU(0) (zero fill-in incomplete LU factorization) and
ILUT (dual threshold incomplete LU factorization) as precondi-
tioners for BiCGStab for solving the system given by Eq. (1) have
resulted in divergence. In what follows, we discuss two precondi-
tioning strategies that proved to be quite effective in handling
these linear systems.

2.2.1 Reordering. We reorder the above linear systems using
the reverse Cuthill-McKee [50] scheme to obtain the symmetric
permutations P, and Pp for A and D, respectively. Applying the

factor 4 via MKL-PARDISO ;

ABl||u|l |f] .. n:
solve [BT 0] L’] = [g] via BiCGStab

(rel.res. < €4,) with preconditioner M = [BT ol

solve M [ v ] =4
w b
solve 4v = a via MKL-PARDISO;
solve Gw = B”v — b via GMRES(100) (with
rel.res. < 8,-(”2), where G = BT 4~ B);
solve Av = a — Bw via MKL-PARDISO;
end

end

Fig. 4 Nonsymmetric nested preconditioner
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compute D=D+ ol; .
compute ILU(0) factorization of 4 ~ 4 = L4Uy;
compute ILU(0) factorization of D =~ D = L;Up;

A B o s
solve [CT D] [Z] = [/gr] via BiCGStab

(rel.res. < €y,) With preconditioner M =

wos 3] [1

solve Av = g via triangular solves ;
solve Dw = b via triangular solves ;

o

0.
Dl

end
end

Fig. 5 Block-diagonal preconditioner

permutations to Eq. (1),

O | (Y I C e M

yields the reordered system,

cr DJlpl ¢
This reordering needs to be done once since the sparsity structure
of the coefficient matrix does not change during the nonlinear

iterations. To simplify the notation, we assume that the system in
Eq. (1) is the one resulting after the reordering.

(23)

2.2.2 Block-Diagonal Preconditioner. Since D is symmetric

positive semidefinite, D=D+al is nonsingular for a small positive
a. Clearly, a needs to be set sufficiently small so as not to intro-
duce a large mass balance error. In our experiments, « is chosen to
be O(107%) or less. Since the dimensions of the matrices A and D
are too large for direct solvers, we use approximations (incom-
plete LU factorizations [51]) of these two matrices as precondi-
tioners for outer BiCGStab iterations. The description of the algo-
rithm is given in Fig. 5.

2.2.3 Nested Preconditioner. Similar to the block-diagonal
preconditioner, let D=D+ al, and obtain the ILU(0) factorizations
of D and A: X:ZAﬁA and 5:1?5[75. The outer Richardson itera-
tion is given by

o R e

where
A B
M= _ (25)
c" b |
Systems involving the preconditioner
v a
M = 26
[W] [b | 20

are solved by forming the block LDU factorization of M as fol-

lows:
A 0 A=l 0 A B
M= A A A
crrjlLo -sflo 1

where S=D—CTA~'B. Systems involving A are solved directly via

(27
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compute D = D+ ol

compute ILU(0) factorization of A ~ A = L,4Uy;

compute ILU(0) factorization of D ~ D = L, Up;

solve [ Ar B] ["] = [f ] via Richardson iterations
C'D||p g

(rel.res < €ur)

[;1,:11] = Bi} +M—1([£] - {gr g] [;ﬁ] ) where

A B
M=lcrpl;

wes]- ]

solve Av = a via forward&backward subst.;
solve Sw = CT'v — b via BiCGStab (rel.res. < &,) with
preconditioner M = D (where S =D —CT 4~1B);
solve Av = a — Bw via forward&backward subst.;

end

end
Fig. 6 Nested preconditioner

forward and backward sweeps, while those involving the Schur
complement S are solved via BiCGStab with the preconditioner

D. The description of the algorithm is given in Fig. 6. As in the
block-diagonal preconditioner, there is an optimal choice of « as
well as €. We refer the reader to Ref. [52] for a detailed discus-
sion of determining the optimal paramaters in a similar problem.

3 Numerical Experiments

3.1 Steady-State Case. We implemented the algorithms de-
scribed in Sec. 2.1 in FORTRAN90. All the computations are per-

100
BFBT Scheme ——
Nonsymmetric Nested Scheme ---#-<-
Symmetric Nested Scheme - »®-
z
[0
=
|_
1 1 1
32x32 64x64 128x128 256x256
Mesh Size
(a)Re = 10
1000 T
BFBT Scheme =+
Nonsymmetric Nested Scheme =--#---
100
=
Q
=
|_
10
1 1 1
32x32 64x64 128x128 256x256
Mesh Size
(¢c)Re = 100

Table 1 Number of outer BiCGStab iterations for the BFBT
scheme
Mesh Re=10 Re=50 Re=100 Re=500
32X32 17 20 25 52
64 X 64 25 33 38 86
128 X128 41 48 62 87
256 X256 62 84 100 171

Table 2 (Average number of inner CG, number of outer
BiCGStab) iterations for the symmetric nested scheme

Mesh Re=10 Re=50
32X 32 (5.6,4) (4.4,13)
64 X 64 (5.8.5) (3.8,11)

128 X 128 (6.1,5) (3.7,10)
256 X256 (6.3,4) (3.6,9)

Table 3 Number of inner GMRES(100) iterations for the nonsym-
metric nested scheme

Mesh Re=10 Re=50 Re=100 Re=500
32X32 33 56 82 374
64 X 64 34 52 76 464

128 X 128 33 52 77 386
256 X 256 33 53 78 439
1000 ¢ T
BFBT Scheme =—+—
Nonsymmetric Nested Scheme -=-#---
Symmetric Nested Scheme «««-m--
100
=2
(0]
E
l_
10
1 1 1
32x32 64x64 128x128 256x256
Mesh Size
(b)Re = 50
1000 ¢ T
E BFBT Scheme =+
Nonsymmetric Nested Scheme =--#---
100
O 3
Q
£
-
10
1 1 1
32x32 64x64 128x128 256x256
Mesh Size
(d)Re = 500

Fig. 7 Total time for various mesh sizes and Reynold’s numbers
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% ]
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(b)first nonlinear iteration , €y, = 2.0 x 1072

10°
E T T T T T
3 No Preconditioner
Diagonal Preconditioner ======= ]
3 Block Diagonal Preconditioner, «=+«=«+=
102 b Nested Scheme (g;, =0.9)2 |
Nested Scheme (gj, =0.5)it~ =« 73
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5 10" ¢ F N i
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(d)fifth nonlinear iteration, €,,; = 5.0 x 1071

Fig. 8 Relative residual plots

formed on a single node of an Intel Xeon cluster. The outer stop-
ping criterion for all three algorithms is €,,=1X 107>, For the
symmetric nested scheme, the stopping criterion for the CG itera-
tions is set to ei(;)=1 X 107!, For the nonsymmetric nested scheme,
the stopping criterion for GMRES is set to ef?:l X 1074,

We compare the performance of BFBT and our nonsymmetric
nested schemes for those linear systems for which the Reynolds
numbers are given by Re=10, 50, 100, and 500. For the symmet-
ric nested scheme, we limit our tests to relatively small Reynolds
numbers, 10 and 50. For all the tests, we use uniform meshes of
sizes 32X 32, 64X 64, 128 X 128, and 256 X 256.

The number of iterations for the BFBT preconditioner is given
in Table 1. In our experiments, the BFBT preconditioner shows
dependence on both the mesh size and the Reynolds number. The
number of inner CG iterations, as well as the outer BiCGStab
iterations, in the symmetric nested scheme shows independence
on the mesh size but weak dependence on the Reynolds number
(see Table 2). With the nonsymmetric nested preconditioner, we
require only 0.5 outer BiCGStab iterations. The number of inner
GMRES iterations shows no dependence on the mesh size (see
Table 3) except when Re=500. In this case, the restarted GMRES
displays significant fluctuation in the number of iterations. For
Re=500, even though the number of iterations is higher than that
of the BFBT scheme, the total solution time is much smaller for
the finer meshes, as shown in Fig. 7(d). The reason is that the cost
of each iteration in the symmetric nested scheme is much lower
than that in the BFBT scheme. Figures 7(a)-7(d) depict, for all
three schemes, the total times for Re=10, 50, 100, and 500, re-
spectively. For the coarsest mesh and the smallest Reynolds num-
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ber, the symmetric nested scheme performs the best. As the Rey-
nolds number becomes larger, the BFBT scheme is the fastest for
coarser meshes. For fine meshes the nonsymmetric nested scheme
outperforms the BFBT scheme significantly.

3.2 Time-Accurate Solutions. The initial residuals are |||
=9.2Xx 107 and [|ro|..=2.0x 1077 for the first and fifth nonlinear
iterations, respectively. The iterations are terminated when
I7dlos/ I7ollse = €oue- Timings were done on a single processor of an
Intel Quad-Core computing platform (Clovertwon).

For the first nonlinear iteration, we have experimented with two
stopping criteria (€,,,), 2.0 X 107> and 2.0 X 1072, and three inner
stopping criteria (e,), 9.0X 107!, 5.0X 107!, and 1.0 X 10~!. The
outer relative residual plots for the first nonlinear iteration are
given in Figs. 8(a) and 8(b).

For the fifth nonlinear iteration, the outer stopping criteria are
2.4%x 107! and 5.0 107!, and the inner stopping criteria are 9.0
x 107!, 5.0x 107!, and 1.0X 107!, The outer relative residual
plots for the fifth nonlinear iteration are given in Figs. 8(c) and
8(d).

The total times reported in Tables 4 and 5 include the reorder-
ing and factorization times (if any). For the first nonlinear itera-
tion, when €,,=2.0X 1073 (see Table 4), the block-diagonal
scheme converges in 13 iterations, consuming 39 s, almost three
times faster than the diagonal preconditioned BiCGStab. The
nested scheme converges in 51 s when €,=9.0 X 107!, If we aim,
however, at a more relaxed stopping criterion (€,,=2.0X 1072,

see Table 4), the diagonal preconditioned BiCGStab requires only
12 iterations consuming 13 s.
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Table 4 Timings for the first nonlinear iteration (e,,;=2.0
X1073, €,4;=2.0X1072) and @=1.0X10"5

Iterations
Inner Time

Preconditioner €in (Avg.) Outer (s)
None ; - (>100,>100) (>102,>102)
Diagonal - - (93,12) (97,13)
Block-Diagonal - - (13,6) (39,23)
Nested 9.0x 10" (1.2,1.0) (12.,8) (51,32)
Nested 5.0%x 107" (1.3,1.0) (19,4) (80,23)
Nested 1.0X 107" (4.5,2.7) (21,3) (193,27)

Table 5 Timings for the fifth nonlinear iteration (e,,=2.4
X101, €,4=5.0X10"") and @=1.0X10"3

Iterations
Inner Time

Preconditioner €n (Avg.) Outer (s)

None - - (>100,>100) (>101,<101)
Diagonal - - (97,30) (100,31)
Block-Diagonal - - (11,8) (34,27)
Nested 9.0x107" (1.0,1.0) (100,20) (271,63)
Nested 5.0x107" (1.0,1.0) (30,5) (112,27)
Nested 1.0X 107" (2.4,2.0) (14,2) (83,19)

For the last nonlinear iteration, when €,,,=2.4 X 107! (see Table
5), the block-diagonal preconditioned BiCGStab scheme con-
verges in 11 iterations consuming 34 s. On the other hand, both
the nested scheme and the diagonal preconditioned BiCGStab
scheme consume more than 80 s. For a more relaxed stopping
criterion, €,,=5.0X 107! (see Table 5), the nested scheme con-
sumes 19 s, while the block-diagonal and diagonal preconditioned
BiCGStab schemes consume 27 s and 31 s, respectively.

4 Concluding Remarks

We have demonstrated the superiority of the nested algorithm
for the steady-state cases that we considered in the computation of
incompressible flows. For the time-accurate cases, we observe the
following: (a) for the first nonlinear iteration, the diagonal precon-
ditioned BiCGStab scheme is the best choice for relaxed stopping
criteria, while the block-diagonal preconditioned BiCGStab is su-
perior for tight stopping criteria; (b) for the fifth (last) nonlinear
iteration, the block-diagonal preconditioned BiCGStab scheme is
best suited for relaxed stopping criteria, while the nested scheme
is the best for strict stopping criteria. There is no single algorithm
that is best for all cases. The robustness of the nested scheme is
clearly demonstrated in Fig. 8, exhibiting an almost monotone
convergence of the residuals. Therefore, the nested scheme is the
most robust method.

Acknowledgment

This work has been partially supported by a grant from NSF
(Grant No. NSF-CCF-0635169), a grant from DARPA/AFRL
(Grant No. FA8750-06-1-0233), and a gift from Intel. The efforts
of T.E.T. and S.S. were supported in part by NASA Johnson Space
Center under Grant No. NNJO6HG84G and also in part by the
Rice Computational Research Cluster funded by NSF under Grant
No. CNS-0421109 and a partnership between Rice University,
AMD, and Cray. We would like to thank Eric Polizzi for allowing
us to use the Intel Clovertown Quad-Core computing platform.

References
[1] Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., and Mittal, S., 1993, “Par-

021204-6 / Vol. 76, MARCH 2009

allel Finite-Element Computation of 3D Flows,” Computer, 26(10), pp. 27—
36.

[2] Tezduyar, T., Aliabadi, S., Behr, M., and Mittal, S., 1994, “Massively Parallel
Finite Element Simulation of Compressible and Incompressible Flows,” Com-
put. Methods Appl. Mech. Eng., 119, pp. 157-177.

[3] Mittal, S., and Tezduyar, T., 1994, “Massively Parallel Finite Element Com-
putation of Incompressible Flows Involving Fluid-Body Interactions,” Com-
put. Methods Appl. Mech. Eng., 112, pp. 253-282.

[4] Mittal, S., and Tezduyar, T. E., 1995, “Parallel Finite Element Simulation of
3D Incompressible Flows: Fluid-Structure Interactions,” Int. J. Numer. Meth-
ods Fluids, 21, pp. 933-953.

[5] Johnson, A., and Tezduyar, T., 1999, “Advanced Mesh Generation and Update
Methods for 3D Flow Simulations,” Comput. Mech., 23, pp. 130-143.

[6] Kalro, V., and Tezduyar, T. E., 2000, “A Parallel 3D Computational Method
for Fluid-Structure Interactions in Parachute Systems,” Comput. Methods
Appl. Mech. Eng., 190, pp. 321-332.

[7] Stein, K., Benney, R., Kalro, V., Tezduyar, T. E., Leonard, J., and Accorsi, M.,
2000, “Parachute Fluid-Structure Interactions: 3-D Computation,” Comput.
Methods Appl. Mech. Eng., 190, pp. 373-386.

[8] Tezduyar, T., and Osawa, Y., 2001, “Fluid-Structure Interactions of a Para-
chute Crossing the Far Wake of an Aircraft,” Comput. Methods Appl. Mech.
Eng., 191, pp. 717-726.

[9] Ohayon, R., 2001, “Reduced Symmetric Models for Modal Analysis of Inter-
nal Structural-Acoustic and Hydroelastic-Sloshing Systems,” Comput. Meth-
ods Appl. Mech. Eng., 190, pp. 3009-3019.

[10] Tezduyar, T., Sathe, S., Keedy, R., and Stein, K., 2004, “Space-time tech-
niques for finite element computation of flows with moving boundaries and
interfaces,” Proceedings of the Third International Congress on Numerical
Methods in Engineering and Applied Science, S. Gallegos, I. Herrera, S. Bo-
tello, F. Zarate, and G. Ayala, eds., Monterrey, Mexico, CD-ROM.

[11] Torii, R., Oshima, M., Kobayashi, T., Takagi, K., and Tezduyar, T., 2004,
“Influence of Wall Elasticity on Image-Based Blood Flow Simulation,” Trans.
Jpn. Soc. Mech. Eng., Ser. A, 70, pp. 1224-1231 (in Japanese).

[12] van Brummelen, E., and de Borst, R., 2005, “On the Nonnormality of Subit-
eration for a Fluid-Structure Interaction Problem,” SIAM J. Sci. Comput.
(USA), 27, pp. 599-621.

[13] Michler, C., van Brummelen, E., and de Borst, R., 2005, “An Interface
Newton—Krylov Solver for Fluid-Structure Interaction,” Int. J. Numer. Meth-
ods Fluids, 47, pp. 1189-1195.

[14] Gerbeau, J.-F., Vidrascu, M., and Frey, P., 2005, “Fluid-Structure Interaction in
Blood Flow on Geometries Based on Medical Images,” Comput. Struct., 83,
pp. 155-165.

[15] Tezduyar, T., Sathe, S., Keedy, R., and Stein, K., 2006, “Space-Time Finite
Element Techniques for Computation of Fluid-Structure Interactions,” Com-
put. Methods Appl. Mech. Eng., 195, pp. 2002-2027.

[16] Tezduyar, T., Sathe, S., and Stein, K., 2006, “Solution Techniques for the
Fully-Discretized Equations in Computation of Fluid-Structure Interactions
With the Space-Time Formulations,” Comput. Methods Appl. Mech. Eng.,
195, pp. 5743-5753.

[17] Torii, R., Oshima, M., Kobayashi, T., Takagi, K., and Tezduyar, T., 2006,
“Computer Modeling of Cardiovascular Fluid-Structure Interactions With the
Deforming-Spatial-Domain/Stabilized Space-Time Formulation,” Comput.
Methods Appl. Mech. Eng., 195, pp. 1885-1895.

[18] Tezduyar, T., Sathe, S., Stein, K., and Aureli, L., 2006, “Modeling of Fluid-
Structure Interactions With the Space-Time Techniques,” Fluid-Structure In-
teraction (Lecture Notes in Computational Science and Engineering), H.-J.
Bungartz and M. Schafer, eds., Springer, New York, Vol. 53, pp. 50-81.

[19] Torii, R., Oshima, M., Kobayashi, T., Takagi, K., and Tezduyar, T., 2006,
“Fluid-Structure Interaction Modeling of Aneurysmal Conditions With High
and Normal Blood Pressures,” Comput. Mech., 38, pp. 482-490.

[20] Dettmer, W., and Peric, D., 2006, “A Computational Framework for Fluid-
Structure Interaction: Finite Element Formulation and Applications,” Comput.
Methods Appl. Mech. Eng., 195, pp. 5754-5779.

[21] Bazilevs, Y., Calo, V., Huhes, T., and Zhang, Y., 2006, “Isogeometric Fluid-
Structure Interaction Analysis With Applications to Arterial Blood Flow,”
Comput. Mech., 38, pp. 310-322.

[22] Khurram, R., and Masud, A., 2006, “A Multiscale/Stabilized Formulation of
the Incompressible Navier—Stokes Equations for Moving Boundary Flows and
Fluid-Structure Interaction,” Comput. Mech., 38, pp. 403-416.

[23] Kuttler, U., Forster, C., and Wall, W., 2006, “A Solution for the Incompress-
ibility Dilemma in Partitioned Fluid-Structure Interaction With Pure Dirichlet
Fluid Domains,” Comput. Mech., 38, pp. 417-429.

[24] Lohner, R., Cebral, J., Yang, C., Baum, J., Mestreau, E. L., and Soto, O., 2006,
“Extending the Range of Applicability of the Loose Coupling Approach for
FSI Simulations,” Fluid-Structure Interaction (Lecture Notes in Computa-
tional Science and Engineering), H.-J. Bungartz and M. Schafer, eds.,
Springer, New York, Vol. 53, pp. 82-100.

[25] Bletzinger, K.-U., Wuchner, R., and Kupzok, A., 2006, “Algorithmic Treat-
ment of Shells and Free Form-Membranes in FSI,” Fluid-Structure Interaction
(Lecture Notes in Computational Science and Engineering), H.-J. Bungartz
and M. Schafer, eds., Springer, New York, Vol. 53, pp. 336-355.

[26] Torii, R., Oshima, M., Kobayashi, T., Takagi, K., and Tezduyar, T., 2007,
“Influence of Wall Elasticity in Patient-Specific Hemodynamic Simulations,”
Comput. Fluids, 36, pp. 160-168.

[27] Masud, A., Bhanabhagvanwala, M., and Khurram, R., 2007, “An Adaptive
Mesh Rezoning Scheme for Moving Boundary Flows and Fluid-Structure In-
teraction,” Comput. Fluids, 36, pp. 77-91.

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



[28] Sawada, T., and Hisada, T., 2007, “Fuid-Structure Interaction Analysis of the
Two Dimensional Flag-in-Wind Problem by an Interface Tracking ALE Finite
Element Method,” Comput. Fluids, 36, pp. 136-146.

[29] Wall, W., Genkinger, S., and Ramm, E., 2007, “A Strong Coupling Partitioned
Approach for Fluid-Structure Interaction With Free Surfaces,” Comput. Fluids,
36, pp. 169-183.

[30] Tezduyar, T., and Sathe, S., 2007, “Modeling of Fluid-Structure Interactions
With the Space-Time Finite Elements: Solution Techniques,” Int. J. Numer.
Methods Fluids, 54, pp. 855-900.

[31] Tezduyar, T., Sathe, S., Cragin, T., Nanna, B., Conklin, B., Pausewang, J., and
Schwaab, M., 2007, “Modeling of Fluid-Structure Interactions With the Space-
Time Finite Elements: Arterial Fluid Mechanics,” Int. J. Numer. Methods Flu-
ids, 54, pp. 901-922.

[32] Torii, R., Oshima, M., Kobayashi, T., Takagi, K., and Tezduyar, T., 2007,
“Numerical Investigation of the Effect of Hypertensive Blood Pressure on
Cerebral Aneurysm — Dependence of the Effect on the Aneurysm Shape,” Int.
J. Numer. Methods Fluids, 54, pp. 995-1009.

[33] Tezduyar, T., Sathe, S., Schwaab, M., and Conklin, B., 2007, “Arterial Fluid
Mechanics Modeling With the Stabilized Space-Time Fluid-Structure Interac-
tion Technique,” Int. J. Numer. Methods Fluids, 57(5), pp. 601-629.

[34] Tezduyar, T., Sathe, S., Pausewang, J., Schwaab, M., Christopher, J., and
Crabtree, J., 2008, “Interface Projection Techniques for Fluid—Structure Inter-
action Modeling With Moving-Mesh Methods,” Comput. Mech., 43(1), pp.
39-49.

[35] Tezduyar, T., Sathe, S., Pausewang, J., Schwaab, M., Christopher, J., and
Crabtree, J., 2008, “Fluid-Structure Interaction Modeling of Ringsail Para-
chutes,” Comput. Mech., 43(1), pp. 133-142.

[36] Bazilevs, Y., Calo, V., Hughes, T., and Zhang, Y., 2008, “Isogeometric Fluid-
Structure Interaction: Theory, Algorithms and Computations,” unpublished.

[37] Baggag, A., and Sameh, A., 2004, “A Nested Iterative Scheme for Indefinite
Linear Systems in Particulate Flows,” Comput. Methods Appl. Mech. Eng.,
193, pp. 1923-1957.

[38] Tezduyar, T., and Sathe, S., 2005, “Enhanced-Discretization Successive Up-
date Method (EDSUM),” Int. J. Numer. Methods Fluids, 47, pp. 633-654.

[39] http://www.maths.manchester.ac.uk/djs/ifiss/

[40] Golub, G., and Wathen, A., 1998, “An Iteration for Indefinite Systems and Its

Journal of Applied Mechanics

Application to the Navier-Stokes Equations,” SIAM J. Sci. Comput. (USA),
19, pp. 530-539.

[41] Elman, H., 1999, “Preconditioning for the Steady-State Navier-Stokes Equa-
tions With Low Viscosity,” SIAM J. Sci. Comput. (USA), 20(4), pp. 1299—
1316.

[42] Silvester, D., Elman, H., Kay, D., and Wathen, A., 2001, “Efficient Precondi-
tioning of the Linearized Navier—Stokes Equations for Incompressible Flow,”
J. Comput. Appl. Math., 128, pp. 261-279

[43] Elman, H., Silvester, D., and Wathen, A., 2005, Finite Elements and Fast
Iterative Solvers, Oxford University Press, New York.

[44] Elman, H., Howle, V., Shadid, J., Shuttleworth, R., and Tuminaro, R., 2006,
“Block Preconditioners Based on Approximate Commutators,” SIAM J. Sci.
Comput. (USA), 27(5), pp. 1651-1668.

[45] Vainikko, E., and Graham, L., 2004, “A Parallel Solver for PDE Systems and
Application to the Incompressible Navier—Stokes Equations,” Appl. Numer.
Math., 49(1), pp. 97-116.

[46] van der Vorst, H., 1992, “BI-CGSTAB: A Fast and Smoothly Converging
Variant of BI-CG for the Solution of Nonsymmetric Linear Systems,” SIAM
(Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 13(2), pp. 631-644.

[47] Schenk, O., Giirtner, K., Fichtner, W., and Stricker, A., 2001, “PARDISO: A
High-Performance Serial and Parallel Sparse Linear Solver in Semiconductor
Device Simulation,” FGCS, Future Gener. Comput. Syst., 18(1), pp. 69-78.

[48] Axelsson, O., and Kolotilina, L., 2005, “Diagonally Compensated Reduction
and Related Preconditioning Methods,” Numer. Linear Algebra Appl., 1(2),
pp. 155-177.

[49] Saad, Y., and Schultz, M., 1986, “GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems,” SIAM (Soc. Ind. Appl.
Math.) J. Sci. Stat. Comput., 7, pp. 856-869.

[50] Cuthill, E., and McKee, J., 1969, “Reducing the Bandwidth of Sparse Sym-
metric Matrices,” Proceedings of the 1969 24th National Conference, ACM,
New York, NY, pp. 157-172.

[51] Saad, Y., 1990, “SPARSKIT: A Basic Tool Kit for Sparse Matrix Computa-
tions,” NASA Ames Research Center, Technical Report No. 90-20.

[52] Manguoglu, M., Sameh, A. H., Tezduyar, T. E., and Sathe, S., 2008, “A Nested
Iterative Scheme for Computation of Incompressible Flows in Long Domains,”
Comput. Mech., 43(1), pp. 73-80.

MARCH 2009, Vol. 76 / 021204-7

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Vector Extrapolation for Strong

Ulrich Kiittler
Wolfgang A. Wall

Chair of Computational Mechanics,
TU Miinchen,

Boltzmannstrasse 15,

85747 Garching, Germany

Coupling Fluid-Structure
Interaction Solvers

Fluid-structure interaction (FSI) solvers based on vector extrapolation methods are dis-
cussed. The FSI solver framework builds on a Dirichlet—-Neumann partitioning between
general purpose fluid and structural solver. For strong coupling of the two fields vector
extrapolation methods are employed to obtain a matrix free nonlinear solver. The em-

phasis of this presentation is on the embedding of well known vector extrapolation meth-
ods in a popular FSI solver framework and, in particular, the relation of these vector
extrapolation methods to established fixed-point FSI schemes. [DOI: 10.1115/1.3057468]

1 Introduction

The development of reliable fluid-structure interaction (FST)
solvers has seen major improvements in recent years. Along with
ever increasing computational resources substantial theoretical
work went into solver frameworks for various kinds of FSI appli-
cations. Among the many areas where FSI solvers are applied are
aeroelasticity [1-3], civil engineering [4], and biomechanics
[5-7]. As diverse as those areas of applications are, as variable are
the FSI solution schemes that can be applied.

Crucial for all solution schemes of FSI problems is the general
notion of coupling between the fluid and structural solver. These
field solvers, however, are different in different applications. A
variety of models have been applied on both the structural and the
fluid side, so it is desirable to design flexible FSI schemes that can
be used to couple different field solvers. And since weak coupling
schemes are not applicable to some problem classes (see Ref. [8]
for a respective analysis), such a solver should be able to realize a
strong coupling. One FSI solver framework that enables such a
flexibility is the strong coupling relaxation based fixed-point
solver, which has a long tradition in FSI calculations, Refs. [9-12]
among others.

Those fixed-point schemes, however, are nonlinear solvers for
the interface degrees of freedom and are closely related to nonlin-
ear vector extrapolation methods, which are well known in nu-
merical mathematics, see Refs. [13—16]. These vector extrapola-
tion schemes are based on the notion of a converging sequence of
vectors, whose convergence can be accelerated by extrapolation.
So, a generalization of the established fixed-point FSI solvers to
solvers based on more history values promises alternative solution
approaches and a better understanding of available methods. In
this contribution the vector extrapolation implementation by Sidi
[17] is applied to a FSI solver framework based on an incompress-
ible Newtonian fluid and nonlinear elastodynamics, see Ref. [18].

Indeed, the generalization pursued here also sheds new light on
some FSI solvers proposed in the literature, which have often
been misinterpreted. In particular, it is shown that the Newton—
Krylov FSI solver proposed by Michler et al. [19] should not be
seen as a Newton based solver, but at its heart rather as a Krylov-
based vector extrapolation scheme.

The remainder of this paper is organized as follows. In Sec. 2
field equations and coupling conditions of the actual FSI solver
are sketched. Section 3 discusses alternative fixed-point relaxation
methods that are generalized to polynomial based vector extrapo-
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lation schemes in Sec. 4. In Sec. 5 two FSI solvers that utilize
vector extrapolation methods are discussed, and a numerical ex-
ample is presented in Sec. 6.

2 Field Equations

FSI problems that are considered here are either two or three
field problems. The structural field and the fluid field, the two
physical fields, share a common interface. At this FSI interface I,
coupling conditions

ddp

P

hold with the interface displacement dr, the interface velocity ur,

the Cauchy stresses of both fluid 0'15 and structure o, and the
interface normal n.

If an arbitrary Lagrangian—Eulerian approach (ALE) is em-
ployed, a third field, the nonphysical mesh field, is needed. This
accounts for the fluid domain’s deformation, an extension of the
FSI interface deformation caused by the interaction. Thus a map-
ping is defined for the fluid domain displacements d° based on the
original fluid domain position X, and the interface displacement
dr

and o) -n=0f-n (1)

d°=@(dp,x,1) in QF X (0,7) (2)

The map (2) is arbitrary but unique. It should be noted that the
same solution schemes, as proposed in this paper, can also be
applied to fixed-grid FSI schemes [20,21].
The structural field is governed by the nonlinear elastodynamics
equation
sdzd SpS s
py:V-(F-S)+pb in Q°X(0,7) (3)
that determines the structural displacements d by prescribing an
equilibrium between the body forces b5, the internal forces deter-
mined from the second Piola—Kirchhoff stress tensor S and the
deformation gradient F, and forces of inertia, where p* describes
the structural density.
The fluid field is governed by the incompressible Navier—
Stokes equations that read
Ju

—| +¢-Vu-2vV -eu)+Vp=b" in

QfF x (0,1
o (0,7)

4)
V-u=0 in QF X (0,7) (5)

on a deforming domain, where both the fluid velocity u and the
kinematic fluid pressure p are unknown. The ALE convective ve-
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locity e=u—u® is the fluid velocity relative to the arbitrarily mov-
ing fluid domain with the domain velocity determined by mapping
2)
J
w= 2 (6)

ot |,

Equation (4) states the conservation of momentum, where b’ rep-
resents the fluid body forces, €(u) the strain rate tensor of the
Newtonian fluid, and v the kinematic viscosity. Equation (5) states
the conservation of mass, which requires the fluid’s incompress-
ibility due to a constant density p.

The field equations come with the appropriate initial and
boundary conditions. These conditions are important but rather
unspectacular and will not be discussed in detail. See Ref. [18] for
a more complete presentation of the FSI solver framework.

Ultimately, the field equations are discretized using finite ele-
ments in space. In time, implicit finite difference schemes are
used. This results in a set of nonlinear algebraic equations that has
to be solved for each time step

M(d%"*!,di ) =0 7
S(dn+l) — fS,n+1 (8)
F(Un+1,pn+1,dG’n+1) =fF,n+1 (9)

where a concrete mapping (2) has to be chosen for a meaningful
discretization (7). The discrete structural solver (8) and the dis-
crete fluid solver (9) are straight versions of Egs. (3) and (4)
combined with Eq. (5), respectively.

Equations (7)—(9) are already prepared to become the building
blocks of a Dirichlet-Neumann partitioned fixed-point FSI solver.
The coupling conditions that these equations have to satisfy are
the coupling of structural displacements and fluid velocities at the
interface

dn+l dn
n+l _ r
uy Ar (10)

the equilibrium at the interface

Fon+l _ S.n+1
(R

(11)
and, of course, the fluid domain deformation according to the
interface movement

dg,nJrl =d’]}‘+1 (12)

3 Relaxation Accelerated Fixed-Point Schemes

3.1 Fixed-Point Fluid-Structure Interaction Coupling.
Fixed-point solvers are very well established for FSI problems.
For a recent presentation, see Ref. [18]. The general idea of fixed-

point solvers is to calculate a new interface displacement dF i+
out of the current one, d’F’,l, by cycling through field solvers

(7)—(9). The subscript i speciﬁes the iteration count.

di’ =St (Fr(di) (13)
The interface operators SF and Fr in Eq. (13) contain the solution
of the structural field (8) and the fluid field (9) together with the
fluid mesh movement (7), respectively. The fluid interface opera-
tor & ”+I—Fr(d”+1) therefore abbrev1ates an algorithm that (a)
prescribes the interface displacement ! to mesh equation (7)
according to Eq. (12), (b) solves mesh equanon (7), (c) prescribes
the interface velocity url from condition (10) to fluid equation
(9), (d) solves fluid equation (9) on the deforming fluid domain,

and (e) extracts the interface tractions f~ f” from the fluid field.

In comparison the structural interface operator dﬁlﬂ

Srl(f”“) simply describes the process that (a) loads structural
equation (8) with the interface load fF ™1 (b) solves structural

equation (8), and (c) returns new mterface displacements dm P

021205-2 / Vol. 76, MARCH 2009

Thus each FSI cycle (13) requires solving all three field equa-
tions (7)—(9). The interface equilibrium (11) is satisfied by design,
the coupling condition (10) however might be violated by the new

interface displacement dr +1- So after each FSI cycle (13), the
interface residual

n+1 dn+l

n+l
rF i+l = M+l — d

provides a measure of the solution quahty. If the convergence
criterion

(14)

1
=l <er (15)

Vg
with specified e is met, the latest interface displacement of this

iterative scheme aﬁfrl is taken for the time step’s solution. Oth-
erwise the interface displacement is relaxed

dithy = di + ol = odit, + (1 - 0)di! (16)
with a potential iteration specific relaxation factor w;, and the
calculation proceeds with a new FSI cycle (13).

The relaxation of the interface displacements (16) is crucial in
this algorithm to enforce and accelerate convergence. This is a
direct outcome of the Dirichlet-Neumann partitioning, which gen-
erally overestimates the structural stiftness for the fluid solver, and
accordingly overestimates the fluid forces that load the structure
as well. All but the most forgiving FSI problems will diverge if no
relaxation (i.e., w;=1) is applied.

In this framework the crucial ingredient is thus the calculation
of w;. Hence, methods for calculating w; are given as follows.

3.2 Aitken’s A? Method. A method that has been very suc-
cessfully used for FSI calculations, see Refs. [10,4,18], and oth-
ers, is Aitken’s A% method, as suggested by Irons and Tuck [22].
This method starts with two known pairs of interface displace-

ments (ar,,-,dr,,-_l) and (a‘l"7,‘+l,dl",l‘) and finds the relaxation pa-
rameter

T
(rp ) (P ey — Fr)

(17)

w;=— w;_
’ = P — "r,i|2

to calculate dp ;,; from &F,M and dr; through Eq. (16). The idea
behind this formula is the scalar secant method, which is given by

dp iydy iy — dr dp;
dp s = T 1~r, +1~dr, ~r (18)
dri—dr;—dr;+dr
_ dl‘,i—lgl‘,iﬂ - gl‘,idl‘,i (19)

Iris1 =T,
In the vector case the division by r, T

vector inverse (I 1 —Fp)/|Fp i —Ir ,|
details on this relaxation method.

rr,; is replaced by the
See Ref. [18] for more

3.3 Alternative Aitken’s A> Methods. There are more vector
versions of Aitken’s A> method available, see, for instance, Ref.
[23]. Most of these, however, are not based on pairs of vectors,
but on a sequence of three vectors di"!, di, |, and d{,. Such a
sequence can be generated from a known interface displacement
d"Jrl by repeated evaluation of the FSI cycle (13) and the relax-
ation step (16). The relaxation (16) is required at this point to keep
the successive FSI evaluations (13) from diverging. Thus a suit-
able problem dependent relaxation factor

(20)

needs to be chosen in Eq. (16). This way a prerelaxed sequence of
three interface displacement vectors dﬁ], d'11+i'+1, and dﬁlz can be

generated with the prerelaxed residual

w; = const
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“n+l1 dn+l

n+1
M =dr, —dr

(21)

“Prerelaxed” thereby means relaxation with a chosen constant re-
laxation parameter before the actual relaxation scheme—here the
alternative Aitken A> method—starts working. This notation will
also be used in Secs. 4-6. The aim of the Aitken A% methods, like
those in Ref. [23], is to find improved approximations of the in-
terface displacement

dits, = adil, + (1 - @)d! (22)

and

1
F z+2 - wdl" i+2 + (1 - w)d'll*.iﬂ (23)

that are closer to solution d?” than the three known interface

displacements. Therefore, the relaxed interface residual

n+l an+l qn+l
F i+2 = dl" i+2 7 dF,i+l (24)

should be minimal

| n+1 |2
Ii+2

— min (25)

This condition determines the relaxation factor

(Fri) (Fr o — Pri)
o= F,H—_l F,ttZ 1;,l+l (26)
Fr o = T

to be used in Eq. (23) to get the relaxed interface displacement
il

There is a remarkable similarity between relaxation parameter
definitions (17) and (26). The only structural difference is the
recursion in Eq. (17) that is absent in Eq. (26). However, whereas
Eq. (17) is based on the direct interface residual rp; and can be
calculated after each FSI cycle, relaxation version (26) is built on
the prerelaxed residual Fp; and needs two previous FSI cycles
before it can be applied. For this reason the Aitken A? version (17)
proposed by Irons and Tuck [22] requires about half the number
of FSI cycles compared with other versions such as those consid-
ered by MacLeod [23], e.g., Eq. (26). This is especially important
to note since several authors in the past used Eq. (26) instead of
Eq. (17) and referred to this approach as the Aitken relaxation
with a reference to Ref. [10], see, e.g., Refs. [24,25].

However, it is possible to improve the relaxation methods that
are based on minimizing the relaxed residual (25) by incorporat-
ing more than three history values, see Ref. [26]. These methods
are known as vector extrapolation methods.

3.4 Vector Extrapolation. Vector extrapolation methods find
approximate solutions based on the first members of a converging
vector  series. A linear combination of k& members
dﬁildﬁfd i ! of a vector serlles of interface displace-
ments that converges to the solution " yields the approximation

dﬂf%m+2-mﬁj?uo (27)
with unknown extrapolation factors ;. As stated above, FSI cycle
(13) can be used to generate such a sequence from a known dis-
placement , if a suitable fixed relaxation parameter w; is ap-
plied in the assomated relaxation steps (16). Through thls con—
verging vector series a new sequence of k difference vectors ¥ + y
is generated. And since the vector series converges, the difference
between two adjacent members, the prerelaxed residual of one FSI
cycle (13), tends to zero

n+1

}Ln;(d'lltLj— AE lun i — 0 (28)

The same extrapolation as above can be applied to the residual
vectors

Journal of Applied Mechanics

ﬂ+1 n+1 n+1
Ft+k_ FH—I +E rF i+ T Ft+/ 1) (29)
Zn+l1 n+1
—rr i+l +2 wArF S+ (30)
with the difference
wn+l wn+l wn+l
Arr it = 5 Si+] Iy Si+j—1 (31)

Since the limit of series (28) is zero, the minimization of extrapo-
lated residual (29)

| n+1 |2

Ti+k (32)

can be perceived as a least-squares approach to find the extrapo-
lation factors @;. With these factors the extrapolation of the origi-
nal sequence (27) can be pursued.

For a sequence of length k=2, the minimization of Eq. (32)
leads to relaxation factor (26).

However, as the iteration proceeds and r?ﬂr]—>0 the difference
(31) will lead to severe cancellations, and the least-squares fit will
fail for purely numerical reasons. So it is advisable to avoid the
differences in Eq. (29) and to simply rewrite the equation to ex-
trapolate the prerelaxed residuals instead

— min

+1 +1 +1 +1 —n+1
%MJhwEw%w hﬂ>2n¢ﬂ (33)
The extrapolation factors y; are
7/' = E’j - E)j+l (34)

with @;=1 and @;,;=0. A least-squares approach to determine
factor y; from Eq. (33) leads to a homogeneous linear system.
Factor 7; needs to be normalized

k
Y=V W
i=1

in order to obtain a valid extrapolation of the interface displace-
ments

(35)

dil, = E i, (36)

The extrapolated interface displacement d +k can then become
the starting point of a new sequence of displacement vectors

n+l1 qn+1
dl Ji+k+1 _dl Stk
that can be extrapolated again.
The method shown here is a vector extrapolation method

known as reduced rank extrapolation (RRE), see, e.g., Refs.
[13,14].

(37)

4 Vector Extrapolation Framework

There is a variety of vector extrapolation methods, where the
major two categories are polynomial methods, see Refs. [13,14],
and methods based on the e-algorithm, as shown by Brezinski and
Zaglia [27] and Brezinski [15]. In this presentation only the first
category is considered.

The three main polynomial vector extrapolation methods, see
Ref. [16], can be neatly arranged in a common framework. In the
context of FSI solvers, starting with a sequence of k+1 known
interface displacements d’f{il ,dﬂil ,d’f—:-'ﬂ, . li i the extrapo-
lation can be stated as demonstrated above

MARCH 2009, Vol. 76 / 021205-3
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ditl, = E i (38)
where y; is determined by
k
> a@;%,=0 (39)
j=1
under the constraint
k
> y=1 (40)
J=1

Different extrapolation methods are obtained for different choices
of a; ;. Popular methods are as follows:

* minimal polynomial extrapolation (MPE)

;= r%ﬂrl Fﬁi, (41)
* reduced rank extrapolation
o= AL T, (42)
* modified minimal polynomial extrapolation (MMPE)
=Y (43)

where yr , is a set of linear mdependent vectors.

In all cases an overdetermined linear system of equations with
unknown extrapolation factor y; is obtained. The methods differ
in how the extrapolation factors are calculated to minimize the
residual (33). Both MPE and RRE require the solution of a linear
least-squares system to determine the extrapolation factors ;.

4.1 Krylov Space Based Implementation. If the operators in
Eq. (13) are linear the generated prerelaxed sequence of interface
displacements F + clearly builds a Krylov space. Vector ex-
trapolatlon (38) ﬁnc(s an approximation within that Krylov space
that minimizes the residual. Thus, it is tempting to exploit the
Krylov space for a practical implementation of vector extrapola-
tion methods. This has been done by Sidi [17] for both MPE and
RRE. Indeed, as MPE and RRE applied to a linear operator are
equivalent to Arnoldi’s method and GMRES, respectively, the
implementation proposed by Sidi [17] follows the same lines as
the implementation of GMRES by Saad and Schultz [28]. An
implementation for MMPE has been proposed by Jbilou and Sa-
dok [29]. In the present contribution the vector extrapolation al-
gorithm by Sidi [17] is applied to the Dirichlet-Neumann coupled
FSI problems.

The vector extrapolation algorithm proposed by Sidi [17] works
with a successively enlarging sequence of vectors. Each time a
new interface displacement d’llﬂrj is added to the sequence, the
extrapolation of residual (33) is calculated. The algorithm is con-
structed such that the linear least-squares system is successively
built and factorized. Each iteration of the extrapolation algorithm
consists of the following three steps.

1. Enlarge and factorize the linear least-squares problem using
the modified Gram—Schmidt process.

2. Calculate extrapolation factors y; according to the chosen
vector extrapolation method

3. Extrapolate res1dua1 +k using Eq. (33) and extrapolate dis-

placement d i ! using Eq. (36).

Normally the extrapolated interface displacement d"Jrl + Will not
be the solution, but closer to the solution than any of the original
displacements in the sequence. However, to find out how good the
extrapolated displacements actually are, another FSI cycle (13) is
needed. In order to avoid that and still be able to assess the quality

021205-4 / Vol. 76, MARCH 2009

of the extrapolation, the extrapolated interface residual fﬁik can
be used, which comes out of the algorithm for free. But this is just
extrapolated as well, so it cannot be trusted too much.

In general the above algorithm will be used in cycles. That is, a
sequence of up to k interface displacements d”Jrl +x 1s calculated,
each one requiring a full FSI cycle. After each FSI cycle, the set
of interface residuals is extrapolated. If the extrapolated residual is
small enough, the extrapolation of the interface displacements is
done, otherwise the next FSI cycle is calculated.

Once the extrapolation is finished the real interface residual
rﬁ-ikﬂ is built and tested using Eqs. (13)-(15)

M = St (Fr(dfiL,) - ditl, (44)
and if convergence has not yet been achieved, the extrapolated

interface displacement dilﬂrk becomes the start of a new sequence

to be extrapolated again (Eq. (37)). This cycle is executed until the
final residual (44) satisfies the tolerance (15).

5 Alternative Vector Extrapolation Based FSI Solvers

5.1 Krylov-Based Vector Extrapolation Solver. Newton—
Krylov solvers (see Ref. [30]) have successfully been applied to
Dirichlet-Neumann coupled FSI problems by Gerbeau and Vi-
drascu [24], Gerbeau et al. [31], Ferndndez and Moubachir [32],
and others.

Another Dirichlet-Neumann partitioned FSI scheme has been
published by Michler et al. [19] and was also named interface
Newton—Krylov solver. An error-amplification analysis for this
scheme is provided in Ref. [33]. In our opinion the scheme pro-
posed by Michler et al. [19] however should not be named a
Newton—Krylov solver since it does not utilize the interface Jaco-
bian

e
Jr= ad, (45)
in any way. Instead a least-squares problem built from interface
residual differences (29) is solved. So, from our point of view the
scheme is a Krylov-based vector extrapolation method.

Remark. We firmly believe that a proper and specific nomen-
clature is an invaluable ingredient in a scientific discussion about
different methods. For this reason we follow Knoll and Keyes [30]
and restrict the name “Jacobian-free Newton—Krylov” to methods
that utilize a Jacobian-vector product to link a nonlinear Newton
iteration with a Krylov-based iterative linear solver. The term
“Jacobian-free” is used to denote the absence of an explicitly con-
structed Jacobian matrix in the solution process of Eq. (45). If
linear system (45) is avoided altogether, the resulting coupling
scheme is not of Newton-type. Accordingly the label Newton—
Krylov is inappropriate for the coupling method by Michler et al.
[19].

In its basic form, the algorithm proposed by Michler et al. [19]
constitutes the RRE method built on the unfavorable numerically
sensitive residual extrapolation (29). The numerical sensitivities
are relaxed to some extent by residual difference definition (31)
relative to the first residual in the extrapolation step

Zn+1 Zn+1

+1
Ar’ll i+j = =Ir i+ T rr i+1 (46)

The relaxation (16) with a fixed parameter w;, which is needed to
obtain a converging sequence of interface displacements d'ffllﬂ in
the first place, is not explicitly mentioned, but easy to add. The
proposed residual extrapolation can be exchanged for the more
robust version (33). Thus a slightly modified version of the basic
algorithm by Michler et al. [19] is obtained and should constitute
a reasonable solution approach for FSI problems.

A little disturbance is caused by the proposed Gram-Schmidt
orthonormalization of interface residual rr iy though. This or-
thonormalization leads to trial interface dlsplacement d?*lﬁ that
are very different from the solution d’*!, and thus are incredibly
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hard for the nonlinear FSI field solvers (Eq. (13)). In Ref. [19] the
authors augmented the orthonormalization step by a user supplied
relaxation constant v to cure these kinds of problems. However, it
turns out that the suggested algorithm is extremely sensitive with
respect to the chosen parameter v. Indeed the best choice of v, the
one that undoes the damage done by the orthonormalization,
changes with each iteration and cannot be supplied by the user.
Hence, it is advisable to drop the orthonormalization altogether.

The Gram—Schmidt process introduced in Sec. 4.1 and the one
suggested by Michler et al. [19] have little in common. The
former is part of the solution process of the least-squares problem,
which is intrinsic to vector extrapolation methods. The latter
changes the creation of the vector sequence without any effect on
the least-squares problem itself. Indeed, the residual differences
(Eq. (46)) used by Michler et al. [19] are not orthogonal to each
other, since the orthonormalization is done before the FSI field
solvers (Eq. (13)) are called.

The second modification proposed by Michler et al. [19] con-
cerns the reuse of the generated Krylov space for further extrapo-
lation steps. This idea is certainly compelling and should be pur-
sued further.

5.2 Field Solver Approximation by Vector Extrapolation.
An interesting idea of how to apply vector extrapolation for FSI
solvers has been suggested by Vierendeels [34]. Here the vector
extrapolation scheme is used to predict the fluid’s interface force
ffflij (or rather just the interface pressure) based on previous fluid
solver results and currently prescribed interface displacement
df*lij Afterwards a monolithic coupling of the structural solver
and the extrapolation scheme for the fluid solver, the reduced-
order model, is pursued, such that the structural solver incorpo-
rates a rough estimate of the fluid solver’s sensitivities. These
solvers are used in Ref. [34] to build a coupling scheme without
relaxation of interface displacements (Eq. (16)).

An extension of this idea is suggested as well. There, both fluid
and structural solver predictors are based on vector extrapolation.
In this case the two extrapolation schemes are coupled to assess
the influence of one field on the other. The actual field solver both
remain untouched, thus black box solvers can be used. See Ref.
[34] for details on these coupling schemes and some numerical
results.

6 Numerical Example

6.1 Driven Cavity With Flexible Bottom. The example used
to demonstrate the vector extrapolation methods is a simple 2D
driven cavity with flexible bottom. This example has been intro-
duced in Ref. [35] and has been used for a variety of numerical
studies since then. The cavity has the shape of a unit square and a
flexible bottom (Fig. 1). At the top a time-dependent horizontal
velocity is prescribed. The fluid domain is discretized with stabi-
lized Q1QI elements in a uniform 32X 32 element mesh. The
cavity is defined as a leaky cavity where at both sides two uncon-
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strained nodes allow free in- and outflow of fluid (Fig. 1). This
way the structural displacements are not constrained by the fluid’s
incompressibility.

The simplicity of the example (and the very coarse mesh used
here) keeps the calculation time low, so many test calculations can
be run. Furthermore, the example is constructed such that a varia-
tion in the structural density p’ yields various variants that pose
very different challenges to FSI coupling algorithms [8,18].

In Fig. 2 the velocity and pressure solution for the case with a
structural density p5=500 kg/m> at time r=7.5 s is shown. The
high structural density pS=500 kg/m? leads to coupled system
(13), which is solved within just a few coupling iterations. Figure
3 shows the number of FSI iterations for each time step for the
Aitken method with relaxation factor (17) and for the reduced
rank and minimal polynomial vector extrapolation methods.

The first relaxation factor in each time step for the Aitken meth-
ods has been constrained by setting /"' =max(w},0.1). The basic
fixed relaxation used to get a vector sequence to extrapolate, i.e.,
the prerelaxed series, has been chosen as w;=0.005. The maxi-
mum allowed vector sequence length has been set to k=10 for
both vector extrapolation methods. Furthermore, the tolerance re-
quired in order to exit a vector extrapolation and to start a new
sequence is

16 T T T T

14 - RRE (Kmax
MPE (Kmax

12 |- -

Number of FSI cycles

0 20 40 60 80 100 120 140
Time steps for p° = 500kg/m?>

Fig. 3 Number of FSI cycles for driven cavity with structural
density pS=500 kg/m? and k,,=10
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n+1
il _ e=1x10"
I
for the extrapolated interface residual (33). The reason for such a
high tolerance is the nonlinear nature of FSI coupling. A lower
tolerance would lead to a much better linear approximation of the
interface displacements, however the nonlinear FSI coupling itera-
tion would not gain much. A tolerance of e=1X 107> already in-
creases the number of FSI cycles per time step considerably. So
due to the high tolerance (47), on average there are just three FSI
iterations needed for both extrapolation methods, which corre-
sponds to a vector extrapolation sequence of length 4.

As can be seen in Fig. 3, the vector extrapolation methods
require a few more FSI cycles than the Aitken relaxation method.
And because the evaluation of the FSI field solvers dominates the
calculation time, the additional work required by the Krylov vec-
tor extrapolation solver from Ref. [17] can be neglected, the Ait-
ken relaxation method is the fastest solver in this case.

This picture does not change much in Fig. 4, where the FSI
iteration counts obtained for a structural density of pS
=50 kg/m? are shown. The number of FSI cycles needed in-
creased for all methods, and the Aitken relaxation method is the
fastest one again. The average number of FSI cycles needed to
reach the tolerance (47) in an extrapolation step is 3.7 (RRE) and
3.8 (MPE).

With a structural density of p$=5 kg/m? the picture finally
changes, see Fig. 5. Here the vector extrapolation methods require
less FSI cycles than the Aitken method, with an average of 4.6 and
4.7 FSI cycles per extrapolation for RRE and MPE, respectively.

Constraining the allowed length of vector sequences to k=2,
which corresponds to the alternative Aitken version with the re-

(47)

Number of FSI cycles

0 20 40 60 80 100 120 140
Time steps for p° = 5kg/m?

Fig. 5 Number of FSI cycles for driven cavity with structural
density p$=5 kg/m?® and kpa,=10
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Fig. 6 Number of FSI cycles for driven cavity with structural
density p$=500 kg/m?® and k=2

laxation parameter (26), leading to a very different behavior. In
this case the vector extrapolation methods require far more FSI
cycles than the Aitken method for pS=500 kg/m? (see Fig. 6).
Decreasing the structural density only increases the gap be-
tween these methods, as can be seen in Figs. 7 and 8. In particular
for pS=5 kg/m?® MPE repeatedly hits the maximum allowed
number of 100 vector extrapolations (with two FSI cycle evalua-
tions each) within one time step and goes on without a fully con-
verged interface displacement (15). So the Aitken relaxation defi-
nition (17) is indeed a much better choice than the definition (26).

Number of FSI cycles

5 I I I I I I I
0 20 40 60 80 100 120 140

Time steps for p° = 50kg/m>

Fig. 7 Number of FSI cycles for driven cavity with structural
density p$=50 kg/m® and ky,x=2
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Fig. 8 Number of FSI cycles for driven cavity with structural
density pS=5 kg/m? and k,,=2
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7 Conclusion

The nonlinear system of equations that describes a Dirichlet—
Neumann partitioned FSI problem has been solved using vector
extrapolation methods. To do this the FSI solver framework pre-
sented in Ref. [18] has been extended based on a vector extrapo-
lation implementation idea, as given in Ref. [17]. The relation of
vector extrapolation methods to fixed-point FSI solvers based on
Aitken relaxation is discussed in detail. Other FSI solvers sug-
gested in literature are found to be customized versions of vector
extrapolation methods. A numerical example has been discussed
in detail to show the performance of vector extrapolation in com-
parison to the fixed-point method with Aitken relaxation. It is
shown that Aitken relaxation is much simpler to implement and
yields a faster coupling scheme in many cases. Thus the Aitken
scheme seems to be a proper choice for many FSI problems.
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The subiteration method, which forms the basic iterative procedure for solving fluid-
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1 Introduction

The numerical simulation of the interaction of a flexible struc-
ture with a contiguous fluid flow is of critical importance to a
multitude of applications, including the analysis of aero-elastic
instabilities such as flutter in aerospace engineering [1,2] and the
investigation of cardiovascular disorders, such as vulnerable
plaques and aneurysms in biomechanics [3,4]. The basic iterative
method for solving fluid-structure-interaction problems is subit-
eration. In the subiteration method, the fluid and solid subprob-
lems are solved alternatingly, subject to complementary partitions
of the interface conditions. In strongly coupled partitioned
schemes, the subiteration process is repeated until convergence to
a prescribed tolerance. Alternatively, the subiteration method can
be used as a preconditioner, for instance to a Krylov-subspace
method [5,6] or as a smoother in multigrid [7]. In loosely coupled
(or staggered) time-integration schemes, the subiteration proce-
dure is performed only once per time step [2,8,9].

On short time scales, the effect of the fluid on the structure can
be represented as an added mass. The ratio of this apparent added
mass to the structural mass is critical to the convergence and
stability properties of the subiteration process. If the characteristic
mass ratio exceeds 1, then the subiteration process is unstable;
see, e.g., Ref. [10]. The added-mass effect of incompressible flows
has recently been studied in Refs. [10-12]. Heuristic methods to
account for the added-mass effect in fluid-structure-interaction
computations with very light structures, such as large cargo para-
chutes, have been proposed in Refs. [13,14]. However, improved
understanding of these effects in engineering computations would
be beneficial. The added-mass effect of compressible flows is not
well known. Moreover, despite the fact that there is a general
concensus that the behavior of subiteration is distinctly different
for compressible and incompressible flows, it appears that the
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precise distinction is not well understood. This incomplete under-
standing has been the source of many miscommunications with
regard to the stability properties of subiteration, and with regard to
the accuracy and stability of staggered time-integration schemes,
which depend strongly on the stability characteristics of the un-
derlying subiteration procedure.

In the present paper, we investigate the difference between the
added-mass effects pertaining to compressible and incompressible
flows, and we consider the implications for the stability and con-
vergence of the subiteration process, and for the stability and ac-
curacy of staggered time-integration methods. Based on a model
problem, viz., a fluid flow on a semi-infinite domain over a flex-
ible panel in 2D, we show that the added mass of a compressible
flow is proportional to the length of the time step in the time-
integration process, whereas the added mass of an incompressible
flow approaches a constant as the time step vanishes. Conse-
quently, regardless of the density of the fluid and the mass of the
structure, the subiteration process is stable and convergent for
compressible flows for sufficiently small time steps. For incom-
pressible flows, this is not the case, and the subiteration method
can remain unstable in the limit of vanishing time-step size. The
distinct difference in the added-mass effect of compressible and
incompressible flows and in the corresponding properties of the
subiteration method, is caused by the fact that for compressible
flows the displacement of the interface affects the fluid only in the
immediate vicinity of the interface, on account of the finite speed
of sound in compressible fluids, whereas for incompressible fluids
the displacement of the interface induces a global perturbation in
the fluid. This qualitative difference between compressible and
incompressible fluids applies identically to other fluid-structure-
interaction problems. It is therefore anticipated that the results of
this paper generalize mutatis mutandis to other more complicated
fluid-structure-interaction problems.

For incompressible flows, the model problem that we consider
is a generalization of that in Ref. [10], in that we include convec-
tive and viscous effects. Our analysis conveys, however, that these
effects are subordinate in the short time-scale limit and, hence, in
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Fig. 1
expanded interface region

this limit we retrieve the results of Causin et al. [10] for incom-
pressible flow. The approach in this paper is based on formal
Fourier analyses of linearized model problems, without regard for
convergence of the Fourier series in the appropriate norms. The
results can be provided with a rigorous footing, but this is beyond
the scope of the present paper.

The contents of this paper are organized as follows. Section 2
presents the problem statement. In Secs. 3 and 4 we derive the
relation between the structural displacement and the correspond-
ing pressure exerted by the fluid on the structure for the
compressible-flow model and the incompressible-flow model, re-
spectively. Section 5 investigates the stability and convergence
properties of subiteration for the two flow types. In Sec. 6 we
consider the implications of the distinct properties of subiteration
for compressible and incompressible flows for the stability and
accuracy of staggered time-integration methods. Section 7 con-
tains concluding remarks.

2 Problem Statement

To formulate the model problems, let x, y, and ¢ designate a
horizontal spatial coordinate, a vertical spatial coordinate, and a
temporal coordinate, respectively. We consider an open space-
time domain

0,={(x,y,0):0<t<T, 0<x<L, alx,t)<y<ow}

see the illustration in Fig. 1. The bottom boundary of Q,, which
represents the interface between the compressible or incompress-
ible fluid flow in Q, and the structure, is given by

To={(x,y,0:0<t<T, 0<x<L, y=alxt)}

The fluid models are elaborated in Secs. 3 and 4.
The structural model that we consider pertains to the flexural
vibration of a beam
#Fz

m—2+a’2

-~ = po- () (1)

0x
with m as the mass of the beam per unit length, z as the vertical
displacement, o as the flexural rigidity, p, as the prescribed exte-
rior pressure, and 7 as the force exerted by the fluid on the struc-
ture.

Denoting by p| r, the pressure in the fluid at the interface, the
fluid and the structure are connected by the dynamic and kine-
matic interface conditions

w0 =plr,  aln)=z(x1) )

021206-2 / Vol. 76, MARCH 2009

lllustration of the panel problem: temporal cross section with

The fluid-flow models associate a unique pressure field 7= with
each admissible interface displacement field «. We refer to map
P:a— 7 as the displacement-to-pressure (dtp) operator corre-
sponding to a particular flow model. For the panel-model problem
that we consider, the customary subiteration approach for solving
fluid-structure-interaction problems can be condensed into the fol-
lowing iterative procedure. Given an initial approximation of the
structural displacement, z,, repeat for n=1,2,...

&z, 7'z
oy 2T
at ox
To elucidate the problem considered in this paper, let us con-

sider the particular case that Eq. (1) is provided with the homo-
geneous initial conditions

m Po—P(z,-1) (3)

2(x,0)=0, dz(x,0)=0 (4)

and, moreover, suppose that the flow problem is furnished with
initial and boundary conditions such that it admits a uniform flow
with pressure p,. The obvious solution to Eq. (1) is then z(x,?)
=Z(x,1)=0, and the corresponding solution of the flow problem is
the uniform flow specified by the initial conditions. By adding a
suitable partition of zero to Eq. (3), we obtain

Pa=2) | -
w2 T e @) )

If we restrict our considerations to displacements that are small in
the appropriate norm, the right member in Eq. (5) can be linear-
ized, and we obtain the following recursion relation for the itera-
tion error &,=z,—Z in the subiteration process:

Pey , p7en —_P's, (6)

m
It axt

where P’ designates the linearized dtp operator. Moreover, under
the stipulation that the iterates z, comply with the initial condi-
tions, it follows that the iteration errors g, satisfy homogeneous
initial conditions

£,(x,0)=0, d&,(x,0)=0 (7)

In the sequel of this paper, we derive the linearized dtp operators
for a compressible-flow and an incompressible-flow model, and
we examine the corresponding behavior of the subiteration error
in compliance with Egs. (6) and (7).
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3 Compressible Flow Model

We consider a compressible flow governed by the Euler equa-
tions

M) oea) _

=0, (o1t N 8
% o o (x,y,1) € O (8a)
with

q:= (ql,qz,qsm)

2

q 9295 92(p(qQ) +q4)

f(q) := (qz,—2 +p(q), =02, (80)
q1 q1 q1

2
q3

| @ %43(17((])'“14))
g(q): <q3,ql+p(q), =

q1 q1
In Eq. (8D), q1, 92, g3, and g4 denote the density, horizontal mo-

mentum, vertical momentum, and total energy of the fluid, respec-
tively. The system (8) is closed by the equation of state

p(@) = (y=1)(qs- 33+ Dq)) (8¢)

with y=1.4.
At the interface, the fluid flow complies with the flow-tangency
condition

da  q,da g3
T B

9
at gy 0x  q ©)

The boundary conditions on the complement dQ ,\I", will not be
further elaborated.

To derive the linearized dtp operator corresponding to Eq. (8),
we consider small deflections

(10)

Accordingly, we assume that the fluid solution can be formally
expanded as q.=qg+eq’ + O(€?), where the generating solution g
corresponds to a uniform horizontal flow with density p,> 0, hori-
zontal velocity Uy =0, and pressure p,

a.=0+ea’, €—0

(Io(x,y,f)=(P()vPOUOsO’%PoUé“LPO/(Y— 1)) (11)

One easily verifies that Eq. (11) indeed satisfies Egs. (8) and (9)

for @=0. In addition, we assume that q, is isentropic and irrota-

tional. The first-order perturbation in the fluid solution can then be

written as q' =(p", p' Uy+pody@’ . pody@’ ,E"), where the potential
¢’ complies with the linearized full-potential equation

! ! ! ’ ’

AU A N Cg<ﬁz_sg+ 7e'

ox dy

=0 (12
ax? axat o ) (12)

with Cj:= \s“’ypo/ po as the speed of sound corresponding to the
reference state. The energy perturbation E’ is irrelevant in the
sequel. The density perturbation p’ it related to the potential by
p'==(py/ Cg)(atcp’ +Uyd,¢'). Moreover, upon expanding the pres-
sure according to p(q)=p(qo)+ep’+O0(€?), it holds that p’
=C§p’. The flow-tangency condition (9) yields the first-order con-
dition

da’

da’ ¢’

+ 0o . - . =

ot ox dy

It is to be noted that Egs. (12) and (13) hold in the unperturbed

domain Q and on the unperturbed interface Iy, respectively.
Green’s function for the wave equation (see, for instance, Ref.

[15], p. 473 and Ref. [16], p. 520) enables us to express the

pressure perturbation at I'y in accordance with Egs. (12) and (13)

as p’ \rozP’a’, with operator P' according to

(13)

P' =7 p,CoWEWY (14a)

where
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(Elﬁ)(x,f):ffl//(fﬁ)
0YR

% H(Cy(t—7) = |(x— & = Uylr - T)Dd

| ~2 2 2 ng
VGt = 1% = [(x = &) = Up(t = 7)|
(14b)
with H(-) as the Heaviside function and
die+Uyde if (x,1) €]O,L[ X]0,T
o] e Ut i (o) LTXI0TL
0 otherwise

It is noteworthy that the Heaviside function restricts the domain of
integration to the triangle

{7'< t,x—(U0+ Co)([—T)<§<X—(UO—C0)(I—T)} (15)

which constitutes the projection of the domain of dependence as-
sociated with Eq. (12) for the space/time coordinate (x,7) onto I'.
Equation (14) represents the linearized dtp operator corresponding
to the considered compressible-flow model.

To facilitate the interpretation of the added-mass effect associ-
ated to Eq. (14), we derive the Fourier symbol of the operator
(14). To this end, we first derive the Fourier symbol of the integral
operator =. Let us consider an isolated Fourier mode

Plx,1) = lAﬁ(K, w)exp(ikx + iwt) (16)
Upon inserting Eq. (16) into Eq. (14b), and restricting the domain
of integration in accordance with Eq. (15), we obtain (Z)(x,?)

=E(K,w,x,t)fﬂ(x,w)exp(ikxﬂwt), where the Fourier symbol =
is given by

t x=(Uy=Cop)(t-7)
é(K, ,x,1) = f f ¢~ ikl +w(t-1))
0

x—(Ug+Co)(t-7)
X (CYt =12 =|(x = &) = Up(t - D) 2dedr
(17)

We introduce the transformations

(0’ 7]) = (f, T) = (-x— (UO - CO sin G)W’I_ 7])

(18)
(r,0) = (k,w) = r27(Cy' cos ¢,sin )

Note that the factor Cal is a prerequisite in the second transfor-
mation in Eq. (18) to ensure dimensional consistency. By means
of Eq. (18) and the partition of unity 1=sin?> #+cos® 6, the inte-
gral (17) can be condensed into

w2 .
sin
= tf B
—m/2 B
where B(r,,0)=r(M cos {+sin {—cos { sin ), with M=U,/C,
as the Mach number. Noting that |8~! sin B|=1 for all BeR, it

follows from the Cauchy—Schwartz inequality that the Fourier
symbol of E can be bounded as

nn

exp(—iB)do (19)

‘EA(Ka wx,n| =) SIn()l 22, m) X llexp(= i)z m2,m2)
(20)
For the operator W according to Eq. (14¢) we simply obtain
(‘I’l//)(x,t)z‘f’(x, w)@(x, w)exp(ikx+iwt), with ‘IAfzi(w+ Uyk).
The Fourier symbol of the composite operator (14a) is the product
of the Fourier symbols of the operators in the composition. Hence,
we obtain the following upper bound for the Fourier symbol of the

linearized dtp operator (14) associated with the compressible-flow
problem

= 7t
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|P| = poCotlw+ Uyn? (21)

In particular, in the analysis of the added-mass effect, we shall be
interested in short time intervals or, equivalently, high frequen-

cies. In this context, it is to be noted that Eq. (21) yields |P|
= poCotw? in the high-frequency limit w— . The Fourier symbol
of this high-frequency limit can be associated with an added mass

Me=poCot (22)
Hence, the added mass corresponding to the compressible flow is
time dependent and, specifically, the added mass w,. is propor-
tional to 7.

Let us allude to the fact that the added mass w. in Eq. (22)
admits an intuitive physical interpretation: because pressure per-
turbations travel at the speed of sound C, the displacement of the
interface has a local effect on the fluid, and only affects the fluid
in a region within distance Cyt of the interface. The mass corre-
sponding to this region (per unit length) is precisely u,.

4 Incompressible Flow Model

We consider an incompressible flow governed by the Navier—
Stokes equations

Ju + duu + dyuv + dp — vAu =0 (23a)
30 + duv + v + dyp — vAv =0 (23b)
A+ =0 (23¢)

where u and v represent the horizontal and vertical velocity com-
ponents, respectively, p denotes the pressure divided by the (ho-
mogeneous) fluid density py, v is the dynamic viscosity, and A
designates the Laplace operator.

At the interface, the flow is assumed to obey slip boundary
conditions. This implies that the flow complies with the tangency
condition

Jda Ja
— +u— -
at ox

and, moreover, that the tangential component of the normal trac-
tion vanishes

v=0 (24)

n, - Vu-t,+t,-Vu-n,=0 (25)

where n, and t, denote the unit normal vector and the unit tan-
gential vector to I'y, respectively, V=(d,,d,), and u=(u,v). The
boundary conditions on dQ \I",, will be elaborated in passing.

We are concerned with small deflections «, conforming to Eq.
(10) and, accordingly, we assume that the flow solution can be
formally expanded as (u,v,p)=(u,v.p)o+e(u,v,p) +0(€),
where the generating solution (u,v,p)o=(Uy,0,po) again corre-
sponds to a uniform horizontal flow. Upon inserting the expansion
in Eq. (23a) and collecting terms of O(e€), we obtain the first-order
conditions

du' +Uydu' +d.p' —vAu' =0 (26a)
' +Updv' +dyp" — vAv' =0 (26b)
du' +dp" =0 (26¢)

These conditions hold on Q. The boundary conditions (24) and
(25) moreover imply that #’ and v’ comply with the following
first-order conditions on I'y:

da’ da’ u'  dv'

0o . - U’ = 0, +— =
Jt ox dy x

For notational convenience, we introduce the condensed nota-

tion q'(x,y,0)=(u",v’,p")(x,y,). Instead of deriving an explicit

expression for the linearized dtp operator corresponding to Egs.

(27)
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(26) and (27), we establish its Fourier symbol. To this end, we
regard an isolated Fourier component of the interface displace-
ment

a'(x,1) = a(k, w)exp(ikx + iwt) (28)
and a corresponding velocity/pressure perturbation
q’ (x,y,1) = 4(k, w)exp(irx + iwt + 5y) (29)

We stipulate that the velocity and pressure perturbations vanish as
y—o. This implies that the functions s:=s(x,w) must have
strictly negative real part. Upon inserting Eq. (29) into Eq. (26),
we obtain N(k, )-q(k, w)exp(ikx+iwt+sy)=0, where the Fourier
symbol N(k,w) of system (26) is defined by

H(k,w) 0 iK
Nk =| 0 Ak,w) $

iK s 0

(30)

with H(k, w)=iw+iUk+v(k*—s?). Therefore, Eq. (29) complies
with Eq. (26) if and only if q(k,w) e kemel(N (k,w)). This equa-
tion admits nontrivial solutions under the strict condition that
det(N(k, ) =(k?—s?)H(k, ) =0. It then follows that Eq. (29) sat-
isfies Eq. (26) provided that

s=—|x|, or
(31

q(k, 0) € span{(ix,— |«|,— i(w+ Uyk))},

G(k,w) € span{(s,— ix,0)}, H(k,w)=0

A solution to Egs. (26) and (27) with o’ specified by Eq. (28) can
be obtained by combining the modes (Eq. (31))

| (0+ Ugh) (0 + 1) _'K
a'=4& —— 5o exp-|dy)| il
|i|(* = 0?)
(w+ U()K)
2 Uyk 7
+ Mexp(ay) ix | |explixx+ior) — (32)

e :

with o(k, ®)= * \ K> +i(w+Uyk)/ v, subject to the restriction that

the real part of o is negative. Recalling that the pressure divided
by the density corresponds to the third component in Eq. (32), we
obtain the following Fourier symbol for the linearized dtp opera-
tor corresponding to the incompressible flow

A (_ (0+ Ugk)?  2vKH(w+ Uyk)

P(k,w) = p, +i ) (33)

It is to be noted that the high-frequency limit of Eq. (33) yields

P~—po|«|"'@* as w— . This symbol can be associated with an
added mass pg|«|™!. In fact, the wave number can only assume
values k=k/L, k € N on account of the structural boundary con-
ditions a(0,1)=a(L,1)=0. Hence, the largest-wavelength compo-

|«d |«d

nent (k=1) is dominant, and for this component it holds that P
~ —u;w* as w— %, where the added mass is defined by

M= poll (34)

Equation (34) conveys that the added mass corresponding to the
incompressible flow is independent of time. It is noteworthy that
added mass (34) is consistent with that derived in Ref. [10], in the
appropriate limit.

To provide a physical explanation for the difference in the
added-mass effect for compressible and incompressible flows, we
note that mode (32) is global. Hence, whereas for compressible
flows the effect of the displacement of the interface on the fluid is
confined to a region within distance Cyt of the interface (see Sec.
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3), for incompressible flows the fluid is affected throughout its
entire domain.
Let us moreover note that the convective part and the viscous

part of P according to Eq. (33) are proportional to w, whereas the
added-mass part is proportional to w?. Hence, convective effects
and viscous effects are subordinate to the added-mass effect in the
limit w— .

5 Stability and Convergence of Subiteration

Equipped with the Fourier symbols of the linearized dtp opera-
tors, we can establish the behavior of the iteration error according
to Eq. (6) for the compressible and incompressible flows. Let us
consider an isolated Fourier component of the iteration error:
g,(x,1)=8,(k,w)exp(ikx+iwt). Upon inserting this component

into Eq. (6), we obtain the relation |&,(x,®)|
=0(k,w)|é,_,(k, )|, where the contraction number @ is defined
by
o= PO (35)
’ |- mw* + o* |

Again restricting our consideration to high frequencies, it follows
that the contraction number is bounded from above as ¢ = u/m as
w— o, where u refers to the added mass according to Egs. (22)
and (34) for the compressible flow and incompressible flow, re-
spectively, and equality holds in the incompressible case. Let us
note that the following results extend without further modifica-
tions to other structural-stiffness operators, as for fixed « the con-
tribution corresponding to the structural-stiffness operator to Eq.
(35) vanishes in the limit w— . This argument has also been
used in Ref. [12]. If o =1, the Fourier amplitudes &, form a non-
increasing sequence and, hence, the subiteration process is stable.
Moreover, if @<1, the subiteration process is formally conver-
gent, and @ determines the rate of convergence. For the compress-
ible and incompressible flows, Egs. (22), (34), and (35) lead to the
following estimates for the corresponding contraction numbers:

0.= P0C0f+0(w_|) 7' pL
c—= m 5

0;= +0(w™") (36)

as w— %,

The estimates in Eq. (36) elucidate the fundamental difference
in the properties of the subiteration method for compressible and
incompressible flows. In computational methods, the subiteration
procedure is generally applied to resolve the aggregated fluid-
structure system within each time step of a time-integration pro-
cess, i.e., iteration (3) is repeated within each time step until the
iteration error is inferior to a certain prescribed tolerance. Hence,
within a time step, the sequence of iteration errors complies with
Egs. (6) and (7), and we implicitly restrict our consideration of the
iteration error to the time interval 0 <t = &t, where o denotes the
time step in the time-integration process. The upper bound Q.. in
Eq. (36) then yields 0,.= pyCydt/m. In particular, this implies that
for compressible flows the convergence behavior of the subitera-
tion process improves if the time step is reduced and, specifically,
0.—0 as or—0. Let us remark that this behavior has also been
established for the piston problem in Ref. [17]. Consequently, for
all settings of the structural mass m and the fluid density p,, there
exists a strictly positive time step " such that the subiteration
process is stable for all &t € ]0, o). Moreover, if the time-step
size is reduced by a certain factor, then the convergence rate of the
subiteration process improves by that same factor. For incom-
pressible flows, this is not the case. For increasingly small time
steps, i.e., in the limit &r— 0, the contraction number converges
toward the strictly positive, time-step-independent high-frequency

Journal of Applied Mechanics

limit in Eq. (36). Therefore, if the characteristic fluid-structure
mass ratio u;/m exceeds 1, the subiteration method is unstable,
regardless of the time step.1

The above results have been established on the basis of the
continuum problem. If a particular temporal discretization scheme
is considered, then the structure of the estimates in Eq. (36) re-
mains intact, although the precise values can be different. We refer
to Ref. [12] for an overview of the effects of temporal discretiza-
tion schemes on the stability of the subiteration procedure for
fluid-structure interaction with incompressible flow.

6 Staggered Time-Integration Methods

The aforementioned fundamental difference in the convergence
properties of the subiteration process for compressible and incom-
pressible flows also carries important consequences for the suit-
ability of staggered (also referred to as loosely coupled or parti-
tioned) time-integration procedures, i.e., time-integration methods
in which the subiteration step is performed only once per time
step; see, for instance, Refs. [2,8,9]. We regard a partition of the
time interval under consideration, 0<¢t<T7, into time steps #;_
<t<t; of uniform length &t=t,—1;_; (i=1,2,...,T/5). Within
each time step, the aggregated fluid-structure system can be con-
densed into

Ay Alz)

. qi
Aw;=Bw;_; with w;= ( ), A= (
Zj Ay Ay

B 0
B:( n )
0 By

where ¢; and z; represent the variables pertaining to the discrete
approximation of the fluid and structure solutions on interval i,
and Aqq, Ay, Ay, and A,, denote the discretized fluid operator,
kinematic condition, dynamic condition, and structural operator,
respectively. The operators B, and B,, extract the initial condi-
tions for the fluid and structure subsystems on interval i from the
approximation on the previous time interval. Of course, on the
first interval the right member in Eq. (37) is replaced with a vector
corresponding to the prescribed initial conditions. For simplicity,
we assume that the operators A and B are linear, which is appro-
priate for the ensuing error analysis.

Let us assume that system (37) has been solved inexactly on the
previous time interval, i—1. In particular, the result on interval
i—1 contains an error éw;_;. This error propagates to an error
6w, ; on interval i via the initial conditions. Hence, on account of
the inexact solution on interval i—1, Eq. (37) is replaced with

Alw; + 6w, ;) = Blw;_y + dw;_) (38)

By virtue of the assumed linearity of Eq. (38), the propagated
error can be expressed in terms of the error on interval i—1 as
ow), ;=L ow;_; with L=A""B. Note that the inverse operator A~!
is well defined under the standing assumption that the fluid-
structure problem is well posed.

Application of the subiteration procedure to Eq. (38) leads to
the following sequence of approximations. Given an initial esti-
mate w; o, for n=1,2,...

(All 0 )(qi,n)_<Bll 0 )(‘]i1+5‘]i1>
Ay An/ \ziy 0 By /\ziy+ 62y
_ (0 Alz)(qi,n—l )
0 0 Zin-1

Note that the fluid and structure approximations with index 7, in
fact, depend exclusively on the structural approximation with in-

(37)

(39)

'In principle, this statement requires somewhat more care because it is not a priori
obvious that @; in Eq. (36) does not represent an upper bound attained in the limit

w— 0. A more precise analysis of Eq. (35) with P according to Eq. (33) reveals that
this is not the case.
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dex n—1. Hence, to initialize the procedure, it is sufficient to
prescribe z; ). We define the local iteration error by éw;,=w;,
—(w;+ 6w, ;). Upon adding a suitable partition of zero to Eq. (39),
we obtain the error-amplification relation

A 0 in 0 A ine
)
Ay Ap/\ 62, 0 0 O -1

From Eq. (40), it follows that éw; ,=Qdw;,_; with
0 -AjA
Q:( 3 11_112 ) @1)
0 ApAyALARL

Hence, by recursion, éw; ,=Q"dw; .

Suppose that the initial approximation on each time interval is
obtained by means of prediction, i.e., by extrapolation of the ap-
proximation on the previous time interval. In particular

(42)

where & represents the extension operator: (Ew,_;)(x,7)
=w;_i(x,t+ ) for 0<t<&r. The extension is well defined for
finite-element approximations in time. For finite-difference ap-
proximations, it can be defined via interpolating polynomials. As-
suming that in each time step the subiteration process is termi-
nated after i iterations, the cumulative iteration error dw; in the
final result on interval i is composed of the propagated error and
the local iteration error at iteration 7z. From Egs. (38)—(42), we
then obtain the sequence of identities

ow; = ow, 7+ 5wp’l-= Qﬁﬁw,-,o+ 5wp,,-
= Q(Ewy + 6wiy) — (w; + W, ) + Ow, ;
=QNE-L)wi +(QU(E-L) + L)dw,;_, (43)

The final identity in Eq. (43) is a consequence of w;=Lw,_; and
5W[”‘= Eﬁwi_l .
From Eq. (43) it follows by recursion that

Wio=EWe + owi_y)

dwi=2 (QUE-L)+LYHQ(E-Liw,  (44)
k=1
and, by the triangle inequality
|8wi = 2 1Q7(E - £) + LI Qe - Lllwedll  (45)

k=1

Recalling that t;=idt, we replace i—k in the exponent in Eq. (45)
with (z;—1,)/ 8. A necessary condition for boundedness of the
right member in Eq. (45) in the limit & —0 is

1Q(E-L)+L|=1+96 as &—0 (46)

for some positive constant J. The exponential term in Eq. (45)
can then be bounded as

1QM(E = L)+ LI = (1 + §on)r/d ~ 2t (47)

as 6t— 0. It is to be remarked that provision (46) does not hold for
=0 because any appropriate norm of the extrapolation operator
€]l exceeds 1 as &t — 0. In particular, this implies that the analysis
below does not hold if only extension is applied, or if the subit-
eration process is nonconvergent or if convergence is too slow. In
such circumstances, the right member in Eq. (45) becomes un-
bounded as 6t—0.

Proceeding under assumption (46), it follows from Egs. (45)
and (47) that

low]| = care™| Q€ - L"”s‘szWkH (48)

for some constant C independent of &t, as ot — 0. Suppose that the
extension operator corresponds to an mth order extrapolation.
Then for sufficiently smooth functions ||€— L||= O(8"). Moreover,

021206-6 / Vol. 76, MARCH 2009

on account of the fact that ||w,|| pertains to a time interval of
length &, it holds that [[wy/|=O(8t"?). Therefore

lswil = C@lQlosr"?) 49)
for some exponentially increasing function C(r), independent of
ot.

The error éw;, which is induced by the inexact solution of the
aggregated fluid-structure system on the intervals with index =i,
is to be compared with the discretization error on interval, i.e., the
difference between the resolved (monolithic) discrete solution,
and the actual continuum solution. Suppose that the monolithic
discrete approximation corresponding to Eq. (37) yields an ap-
proximation to the solution of the fluid-structure system with for-
mal temporal order of accuracy m, i.e., for sufficiently smooth
solutions its holds that the approximation error on each time in-
terval conforms to

lhw; =l = Cor[wll = O(ar™"2) (50)

as ot—0, where w represents the continuum solution. The addi-
tional factor 1/2 in estimate (50) originates from the fact that the
measure of the considered time interval is proportional to &t.

The upper bound (49) enables us to clarify the distinctly differ-
ent properties of staggered time-integration procedures for com-
pressible and incompressible flows. For compressible flows, Q||
is proportional to . In Sec. 5 this proportionality has been estab-
lished for the map &z;,,_;+> &; ,, cf. Eq. (36). However, specifi-
cally, the norm of the map between the structure displacement and
the fluid state, dz;,—1+> g, ,, is proportional to &t, and the norm
of the map between the fluid state and the structure displacement,
6q; ,—> 6z; ,, is proportional to 1 as 6t—0. Upon inserting the
proportionality [|Q| e &t into Eq. (49), it follows that for a com-
pressible flow the iteration error on interval i, i.e., the error rela-
tive to the monolithic result, is bounded as: |ow/|
=C,(t;) ™" V2 as §r—0, for some exponentially increasing
function C,(z), independent of &. For a staggered time-integration
method, 7=1 and, therefore, the cumulative iteration error is of
the same order as the discretization error in the monolithic result,
cf. Eq. (50). Hence, the staggered procedure possesses the same
order of accuracy as the underlying monolithic method, but with a
different constant of proportionality. As a digression, we note that
for n=2, the cumulative iteration error is one order higher than the
discretization error. Consequently, in the limit t— 0, the result
obtained with two subiterations per time step is identical to the
monolithic results.

For incompressible flows, staggered time-integration methods
behave distinctly different. In the incompressible case, the norm
of | Q|| converges to a positive constant in the limit &— 0. For
in=1, the global iteration error thus remains O0(6"™"2) and, hence,
the order of accuracy of a result obtained by a staggered method is
one order lower than that of the underlying monolithic method. In
fact, assuming that the subiteration process is convergent, the
number of subiterations per time step must increase as i
«|log &t| as ot—0 to obtain a method, which yields the same
order of accuracy as a monolithic approach.

The distinct properties of || Q)| for compressible and incompress-
ible flows is also pertinent in relation to condition (46). For com-
pressible flows, ||Q| = &t in the limit & — 0. Therefore, condition
(46) is fulfilled for 7=1 under the solitary provision that |[£[=1
+0(6r) as 8r— 0, independent of the extrapolation operator. This
implies that if this provision holds, then the solution of the stag-
gered scheme cannot grow unbounded in finite time, on account
of upper bound (47). For incompressible flows, this is not the case
because ||Q|| does not vanish as &t— 0.

7 Conclusion

To examine the difference between the added-mass effects of
compressible and incompressible flows, we considered the model
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problem of flow in a semi-infinite domain over a flexible panel in
2D. We derived the displacement-to-pressure operator, which re-
lates the pressure exerted by the fluid on the structure to the struc-
tural displacement for a compressible flow governed by the Euler
equations and for an incompressible flow governed by the Navier—
Stokes equations. For the compressible flow, the displacement-to-
pressure operator assumes the form of an integrodifferential op-
erator. We derived the Fourier symbol of this operator, and we
showed that in the high-frequency limit corresponding to short
time intervals, this Fourier symbol can be associated with an
added mass proportional to the length of the considered time in-
terval. For the incompressible flow, the Fourier symbol represents
a time-independent added mass in the high-frequency limit. More-
over, we showed for the incompressible flow that the viscous and
convective effects are subordinate to the added-mass effect in the
high-frequency limit.

The distinct proportionalities of the added mass to the time step
for compressible and incompressible flows yield essentially differ-
ent behavior of the subiteration method for fluid-structure-
interaction problems. For compressible flows, for any setting of
the density of the fluid and the mass of the structure, the subitera-
tion process is stable and convergent for sufficiently small time
steps. Furthermore, if the time step in the time-integration method
is reduced by a certain factor, then the convergence rate of the
subiteration method improves by that same factor. For incom-
pressible flows this is not the case, and the subiteration method
can be unstable even in the limit of vanishing time-step size.

Finally, we considered the implications of the difference in the
convergence behavior of the subiteration method for staggered
time-integration methods. We showed that for compressible flows,
the order of accuracy of a staggered method is identical to that of
the underlying monolithic method, provided that a suitable predic-
tor is used. If two subiterations per time step are applied instead of
one, then the approximation provided by the staggered method
approaches the monolithic result in the limit of vanishing time-
step size. Moreover, we showed that for compressible flows, stag-
gered time-integration methods are stable in the limit of vanishing
time-step size, in the sense that the solution remains bounded in
finite time. For incompressible flows, the order of accuracy of a
stable staggered approximation with prediction is one order lower
than the corresponding monolithic result. Moreover, for incom-
pressible flows, time-integration schemes with a finite number of
subiterations per time step can be unstable in the limit of vanish-
ing time-step size, in the sense that the approximation can grow
unbounded in finite time, if the subiteration process converges too
slowly. Staggered methods therefore appear appropriate for fluid-
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structure-interaction problems with compressible flows, but for
fluid-structure-interaction problems with incompressible flows
their use should be dissuaded.

References

[1] Farhat, C., Geuzaine, P., and Brown, G., 2003, “Application of a Three-Field
Nonlinear Fluidstructure Formulation to the Prediction of the Aeroelastic Pa-
rameters of an f-16 Fighter,” Comput. Fluids, 32, pp. 3-29.

[2] Farhat, C., 2004, “CFD-Based Nonlinear Computational Aeroelasticity,” En-
cyclopedia of Computational Mechanics, Vol. 3: Fluids, E. Stein, R. Borst, and
T. Hughes, eds., Wiley, New York, pp. 459-480.

[3] Torii, R., Oshima, M., Kobayashi, T., Takagi, K., and Tezduyar, T., 2006,
“Computer Modeling of Cardiovascular Fluid-Structure Interaction With the
Deforming-Spatial-Domain/Stabilized-Space-Time Formulation,” Comput.
Methods Appl. Mech. Eng., 195, pp. 1885-1895.

[4] Tezduyar, T., Sathe, S., Cragin, T., Nanna, B., Conklin, B., Pausewag, J., and
Schwaab, M., 2007, “Modeling of Fluid-Structure Interactions With the Space-
Time Finite Elements: Arterial Fluid Mechanics,” Int. J. Numer. Methods Flu-
ids, 54, pp. 901-922.

[5] Michler, C., van Brummelen, H., and de Borst, R., 2006, “Error-Amplification
Analysis of Subiteration-Preconditioned GMRES for Fluid-Structure Interac-
tion,” Comput. Methods Appl. Mech. Eng., 195, pp. 2124-2148.

[6] Heil, M., 2004, “An Efficient Solver for the Fully-Coupled Solution of Large-
Displacement Fluid-Structure Interaction Problems,” Comput. Methods Appl.
Mech. Eng., 193, pp. 1-23.

[7] van Brummelen, H., van der Zee, K., and de Borst, R., 2008, “Space/Time
Multigrid for a Fluid-Structure-Interaction Problem,” Appl. Numer. Math.,
58(12), pp. 1951-1971.

[8] Piperno, S., and Farhat, C., 2001, “Partitioned Procedures for the Transient
Solution of Coupled Aeroelastic Problems—Part II: Energy Transfer Analysis
and Three-Dimensional Applications,” Comput. Methods Appl. Mech. Eng.,
190, pp. 3147-3170.

[9] Felippa, C., Park, K., and Farhat, C., 2001, “Partitioned Analysis of Coupled
Mechanical Systems,” Comput. Methods Appl. Mech. Eng., 190, pp. 3247—
3270.

[10] Causin, P., Gerbeau, J., and Nobile, F., 2005, “Added-Mass Effect in the De-
sign of Partitioned Algorithms for Fluid-Structure Problems,” Comput. Meth-
ods Appl. Mech. Eng., 194, pp. 4506-4527.

[11] LeTallec, P, and Mouro, J., 2001, “Fluid Structure Interaction With Large
Structural Displacements,” Comput. Methods Appl. Mech. Eng., 190, pp.
3039-3067.

[12] Férster, C., Wall, W., and Ramm, E., 2007, “Artificial Added Mass Instabilities
in Sequential Staggered Coupling of Nonlinear Structures and Incompressible
Viscous Flows,” Comput. Methods Appl. Mech. Eng., 196, pp. 1278—1293.

[13] Tezduyar, T., Sathe, S., Keedy, R., and Stein, K., 2006, “Space-Time Finite
Element Techniques for Computation of Fluid-Structure Interactions,” Com-
put. Methods Appl. Mech. Eng., 195, pp. 2002-2027.

[14] Tezduyar, T., 2006, “Interface-Tracking and Interface-Capturing Techniques
for Finite Element Computation of Moving Boundaries and Interfaces,” Com-
put. Methods Appl. Mech. Eng., 195, pp. 2983-3000.

[15] Zauderer, E., 1989, Partial Differential Equations of Applied Mathematics,
(Pure and Applied Mathematics), 2nd ed., Wiley, Chichester, West Sussex, UK.

[16] Haberman, R., 1998, Applied Partial Differential Equations, 3rd ed., Pearson
Prentice-Hall, Upper Saddle River, NJ.

[17] van Brummelen, H., and de Borst, R., 2005, “On the Nonnormality of Subit-
eration for a Fluid-Structure Interaction Problem,” SIAM J. Sci. Comput.
(USA), 27, pp. 599-621.

MARCH 2009, Vol. 76 / 021206-7

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Shu Takagi

Research Program for Computational Science,
RIKEN,

2-1 Hirosawa, Wako,

Saitama 351-0198, Japan

e-mail: takagish@riken.jp

Takeshi Yamada®
Department of Mechanical Engineering,
The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku,

Tokyo 113-8656, Japan

e-mail: yuushi@fel.t.u-tokyo.ac.jp

Xiaobo Gong

Research Program for Computational Science,
RIKEN,

2-1 Hirosawa, Wako,

Saitama 351-0198, Japan

e-mail: gong@riken.jp

Yoichiro Matsumoto

Department of Mechanical Engineering,

The Deformation of a Vesicle in a
Linear Shear Flow

In this paper, we discuss the motion of a vesicle in a linear shear flow. It is known that
deformable vesicles such as liposomes show the so-called tank-treading and tumbling
motions depending on the viscosity ratio between the inside and outside of the vesicle, the
swelling ratio, and so on. First, we have conducted numerical simulations on the tank-
treading motion of a liposome in a linear shear flow and compared the results with other
numerical and experimental results. It is confirmed that the inclination angle of the
vesicle becomes smaller when the viscosity ratio becomes larger or the swelling ratio
becomes smaller and that the present results show quantitatively good agreement with
other results. Then, the effects of membrane modeling are discussed from the mechanics
point of view. There are two types of modeling for the lipid bilayer biomembrane. One is
a two-dimensional fluid membrane, which reflects the fluidity of the lipid molecules. The
other is a hyperelastic membrane, which reflects the stiffness of cytoskeleton structure.
Liposome is usually modeled as a fluid membrane and red blood cell (RBC) is modeled
as a hyperelastic one. We discuss how these differences of membrane models affect the
behaviors of vesicles under the presence of shear flow. It is shown that the hyperelastic
membrane model for RBC shows a less inclination angle of tank-treading motion and
early transition from tank-treading to tumbling. [DOI: 10.1115/1.3062966]
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1 Introduction

In the capillary vessels, vesicles such as red blood cells (RBCs),
drag delivery agents, and contrast agents change their shapes in
response to the local flow conditions. In a macroscopic point of
view, the deformation of these vesicles is related to the capability
of passage through capillaries, and in the microscopic point of
view, it is related to the efficiency of molecular transfer between
the inside and outside of the vesicles. Therefore, to predict the
mass transfer such as oxygen transfer from RBC to the surround-
ing tissues through capillaries, it is essential to understand the
multiscale nature of the phenomena from the molecular scale to
the continuum one. From these facts, the multiscale analysis for a
microcirculation system becomes important.

In the case of biomembrane system in nature, molecular trans-
fer across the membrane is very complicated through ion channel,
protein driven pores, etc., and it is difficult to conduct the so-
called multiscale simulation on these types of phenomena. Hence,
instead of investigating such a complicated membrane, an artifi-
cial biomembrane called liposome, which has a simple bilayer
structure of lipid molecules, can be used to develop the simulation
methodology for the multiscale analysis in biomembrane system.
Not only the methodological point of view but also the practical
point of view, the multiscale simulation for liposome is useful to
design its functions because liposome is expected to be utilized
for the drag delivery agent, artificial oxygen carrier, etc. Since the
experimental methods to produce liposomes and to investigate
their characteristics are reasonably well developed, there is also an
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advantage that validation of the simulation results can be con-
ducted through the comparison with liposomes whose character-
istics are well controlled.

Because of the above-mentioned facts, we have been working
on the multiscale analysis of liposome and numerically investi-
gated molecular transfers across a lipid bilayer membrane by mo-
lecular dynamics simulations [1], mesocospic membrane proper-
ties by coarse grained type simulation [2], and macroscopic
membrane deformation by continuum mechanics simulations,
which are discussed in this paper.

Related to the membrane deformation of a liposome, there is an
interesting phenomenon observed in a shear flow. A liposome in a
linear shear flow shows two different types of the motions: tank-
treading and tumbling. These motions are illustrated in Fig. 1.
Tank-treading motion shows the caterpillarlike motion: steady
shape with inclination angle € constant having the surface veloc-
ity. Tank-treading motion occurs when the viscosity inside the
vesicle is sufficiently small compared with that outside the
vesicle. And, tumbling motion occurs when the viscosity inside
the vesicle is sufficiently large. Increasing the internal viscosity
makes the vesicles inclined in lower angle and it ends up with the
tumbling motion below inclination angle #=0. Beaucourt et al. [3]
conducted two-dimensional numerical simulations on the tank-
treading motion of a liposome in a linear shear flow. They discuss
the relation between the energy dissipation in the system and the
motion change from tank-treading to tumbling. Kraus et al. [4]
conducted three-dimensional simulation and obtained the tank-
treading motion using an area preserving fluid membrane model.

A large number of numerical studies have been done related to
the deformation of vesicles. Especially, simulations for RBC using
particle methods are getting more popular [5,6]. Since we are
interested in the multiscale approach using partial differential
equations for the continuum mechanics, here we do not review
these particle methods. Instead, we review some of the similar
method to our approach, using Eulerian description with partial
differential equations. A deformation of a vesicles in a shear flow
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Fig. 1 The behavior of deformable liposome in a simple shear
flow (ris the viscosity ratio between the inside and outside of a
liposome, and 6; is the inclination angle)

was investigated for the analysis of a RBC by several researchers
[7-10]. They expressed a RBC membrane as a hyperelastic mate-
rial. And various models such as neo-Hookean model and Evans—
Skalak (ES) model were proposed to express the complex RBC
membrane and have been investigated. In these models, the coef-
ficients for the constitutive equations need to be measured through
various experiments, for example, the micropipette aspiration
method. Well-known ES model was developed through the detail
measurements by themselves. They expressed the strain energy
function, which was fitted to the result of deformation measure-
ments for human RBCs. Therefore, ES model can express the
nonlinear elastic characteristics of RBC, although this model sim-
plifies the complicated biomembrane structure, which has the so-
called cytoskeleton structure below the lipid bilayer, as a hyper-
elastic membrane. On the other hand, lipid bilayer itself behaves
with the fluidity in the tangential direction on the surface, which is
an important feature of biomembrane called lateral diffusion.
For the numerical simulations of RBC, there are several ways
to compute, using the schemes for fluid-structure interaction. For
example, Pozrkidis [9] and Barthes-Biesel et al. [10] used the
boundary element method (BEM), in which they solve the bound-
ary integral equation for Stokes flow to simulate the deformation
of vesicles. Eggleton and Popel [8] used the immersed boundary
method (IBM) originally developed by Peskin [11]. From the
viewpoint of numerical accuracy, BEM for Stokes flow will be
better than the IBM as far as the simulation is conducted for small
scale capillary vessels. But, considering the situation that the in-
ertia effect of the flow field plays a certain role, IBM with Navier—
Stokes equation will have some advantages. In both methods, the
membrane is discretized into a network of surface elements de-
fined by a collection of surface nodes. And tracking these nodes in
Lagrangian way at each time step, a large deformation of RBC is
simulated. Here, considering the future application for more com-
plicated behavior, IBM was employed to simulate the large defor-
mation of vesicles. Besides the IBM, the arbitrary Lagrangian-
Eulerian (ALE) method with a moving mesh is also widely
adopted in the simulations for the fluid-structure interaction prob-
lems [12,13]. The difference is as follows. In an ALE approach,
the mesh is moved with an arbitrary velocity on which the flow

021207-2 / Vol. 76, MARCH 2009

field is solved. In the IBM, two separated grid systems is em-
ployed. It is on the stationary grids that the flow field is solved and
on the unstructured surface grids that the movement and deforma-
tion of the membrane are tracked in a Lagrangian way. Thereafter,
multiple RBCs in a complicated flow geometry would be easily
treated with the IBM, although it could be less accurate than ALE
method especially for the high Reynolds number cases.

In this paper, we numerically investigate the deformation of a
vesicle in a linear shear flow using the immersed boundary
method. First, two-dimensional simulation of a liposome tank-
treading motion in a linear shear flow is investigated. Then, three-
dimensional simulations of a liposome and a red blood cell in a
linear shear flows are discussed with the emphasis on the differ-
ence of membrane models.

2 Membrane Models

Here, we explain the membrane models and the numerical
method for the present simulation. There are two types of model-
ing for the lipid bilayer biomembrane. A liposome, which only has
lipid bilayer structure, is modeled to have a two-dimensional in-
compressible fluid membrane due to the fluidity of lipid molecules
on the membrane. On the other hand, red blood cell is often mod-
eled to have a hyperelastic membrane due to their stiff cytoskel-
eton structure. In this study, the behaviors of vesicles, which have
different types of membranes mentioned above, are discussed un-
der the presence of shear flow.

2.1 Liposome Model. We first discuss the liposome mem-
brane model, which has a simpler structure from molecular point
of view. Here, we used the well-known Helfrich membrane model
[14]. In the case of Helfrich model, membrane energy is given as
follows, considering that the membrane shape is influenced by the
bending rigidity.

1
E= Ekbf (c, +c2—c0)2dA+kGf c1c2dA+)\J dA+APf av
(1)

where k,, is the bending rigidity, ¢, and ¢, are the principal cur-
vatures of the membrane, ¢ is the spontaneous curvature, and dA
and dV are the small elements of surface and volume, respec-
tively. Under this description, A and AP are the Lagrangian mul-
tipliers to keep the total surface area constant and the volume
constant, respectively. k;fc;c,dA term does not change as far as
the topological change of a vesicle does not occur and is not
considered in the present study. Using the expression given in Eq.
(1), the force acting on a membrane is expressed by a functional
derivative as

[23
or

2)

2.2 Red Blood Cell Model. Next, the membrane model of
RBC is discussed. RBC membrane is composed mainly by two
parts: the lipid bilayer and a cytoskeleton of proteins. The mem-
brane exhibits an elastic response to surface deformation and
bending rigidity. Following Pozrikidis [9], we assume the RBC
membrane to be a thin hyperelastic shell and express the jump in
hydrodynamics traction across the RBC membrane as

f=(P-V)-(T+qn) 3)

Here, P is the tangential projection operator; T is the in-plane
surface stress tensor. Here, q is the vector for the transverse shear
stress and n is the outward unit normal vector. In the present
study, the model of Skalak et al. [15] is employed for the surface
stress tensor, which proposes the following expression for the
membrane model of a RBC,
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where \; and \, are the principal strains, V2 is the positive-
definite left-hand Cauchy—Green deformation tensor. B and C are
the physical constants estimated to be on the order of B
=0.005 dyn/cm and C=100 dyn/cm by Skalak et al. [15]. The
first term on the right-hand side contributes to an anisotropic sur-
face stress, while the second term contributes to an isotropic sur-
face stress. The large value of C gives the membrane nearly in-
compressible, that is, local area preserving.

2.3 Numerical Method. Peskin’s immersed boundary method
[11] is used for the simulation of deformable vesicles. Incom-
pressible flow is assumed and the following governing equations
are solved.

In continuity equation,

V.-U=0 (5)

In momentum equation,

DpU
DLZ=-Vp+V~M(VU+’VU)+Jf&(x-X)dA (6)

where f is the force acting on the membrane, which is calculated
from the membrane model given in Egs. (1)—(4) and 8(x—X) rep-
resents Dirac’s delta function where the membrane force acts on
x=X. As is shown in Eq. (6), the force acting on the membrane is
included in the momentum equation in this method. Since the
direct use of the singular function §(x—X) gives a numerical in-
stability, a smoothed delta function D(x) given below is used in
the discretized domain.

(4h)'”H< 1+ coszx,«
= 1

D(x) 2h ) (I < 2h) )

0 otherwise

where h is the grid size and n indicates the spatial dimensions.
The continuity equation (5) is coupled with the momentum equa-
tion (6) and the flow field is solved using SMAC algorithm. For the
discretization, the second order central difference scheme is used
for both the convective and viscous terms. Second order Adams—
Bashforth is used for the time integration.

In the present study, the simulation was set up under the fol-
lowing conditions. The length scale of the flow field was given as
an equivalent radius of the vesicles, which is defined as a
=(3V/4m)'3. a=2.8 um was employed here. The size of the
computational domain was set as 8a X 8a X 8a, and the number of
grid points was 80X 80X 80. A linear shear rate y was given in
y-direction. The initial velocity field was set as (yy,0,0). In this
study, the important Reynolds number is a shear Reynolds number
for a vesicle, which is defined as Re=(2a)?y/v. This Reynolds
number is much smaller than unity and it is O(107>) in the present
simulations. The time scale is given by the inverse of shear rates
1/, and the time step for the present simulations is given as 107*
of this time scale.

In general, the error of mass conservation of each separated
region causes inaccurate numerical solutions in fluid-structure in-
teraction problems. In the present methods, there is a small nu-
merical error accumulating when the membrane surface is tracked
in a Lagrangian way. This gives the mass (volume) conservation
error. We have checked this error during the whole simulation
period. It was found that the volume change in the present simu-
lations is always smaller than 2%, mostly less than 1%. So, we
concluded that the effect of this error is small enough to discuss
the effect of membrane model differences.

For dimensionless numbers, swelling ratio is one of the most
important. In a three-dimensional case, it is defined as

Journal of Applied Mechanics
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where V is the volume inside a vesicle, and S is the surface area
that the vesicle holds. The swelling ratio describes the ratio be-
tween the internal volume of a vesicle and that of a sphere, which
has the same surface area. For a healthy red blood cell with the
biconcave discoid shape formulated by Evans and Fung [16], as
an example, the swelling ratio equals to 0.64.

With a similar idea, the swelling ratio in two-dimensional cases
is defined as

Sw,zD = % (9)
477( —)

27

where S is the surface area, and € is the perimeter length of the
area. It takes the value of 1.0 when the area is circle.

The viscosities between the surrounding plasma and the com-
ponents inside RBCs are usually different. The viscosity ratio be-
tween the inside and the outside of the RBC, defined as r
= Win/ Mou can be larger than 5.0. Both the swelling ratio Sy, and
the viscosity ratio r are important parameters to decide the tank-
treading and tumbling behavior.

In the present work, the dimensionless parameters, Cg, Cc, and
C,, are also introduced. Cg, C¢, and C,, are defined as follows:

(10)

These parameters indicate ratios of the shear stress in the flow
to that in the membrane, the surface area expansion stress, and the
bending stress, respectively. In Eq. (10), B is a shear stress coef-
ficient, C is an expansion coefficient of the surface area, and k;, is
a bending rigidity. In the present simulations, B takes the same
value as that proposed by Chien et al. [17], which gives B=1.7
X 1073 dyn/cm. The bending rigidity k), is given from Evans and
Skalak’s work [7], in which k,=1.8X 1072 dyn cm. As for an
expansion coefficient, Skalak et al. [15] proposed the value of C
=100 dyn/cm. Since this value of C is too large, the time step for
the simulation has to be unreasonably small. And for the same
reason, more instability is induced during the tank-treading mo-
tion when the membrane is rotating. To avoid this situation, a
much smaller value of C, C=0.01 dyn/cm, is used in the present
simulation. It is confirmed that even using this small number of C,
the total surface area difference during the simulation is less than
1%.

For the boundary conditions, the periodic boundaries are used
in x- and z-directions, and the moving wall conditions are imposed
in y-direction. The linear shear profile of (yy,0,0) is also given
inside the vesicle as an initial condition. The flow configuration
and the initial setup for a RBC system are shown in Fig. 2.

Cp=tou¥a/B,  Cc=poyyalC, Cyp= proyya’lky

3 Results and Discussion

3.1 2D Simulation of a Liposome. In this section, we discuss
mainly the tank-treading motion and give the quantitative com-
parisons of the present results with those of other numerical and
experimental results.

First, we discuss the two-dimensional case for the tank-treading
motion of a liposome. There is a previous study done by Beau-
court et al. [3]. They conducted two-dimensional numerical simu-
lations on the tank-treading motion of a liposome in a linear shear
flow. In the present study, we start our discussion through the
comparison with their results.

In the present simulations, a liposome is initially set in the
computational domain without the presence of shear flow. In this
situation, the liposome takes the equilibrium ellipsoidal-like shape
after a certain interval of the simulation. This ellipsoidal-like
shape is horizontally set in the domain; long-axis is parallel to the
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Fig. 2 The initial configuration of a RBC in a linear shear flow

x-axis. Then, a linear shear is introduced to have a tank-treading
type motion. All the simulations for a deformed vesicle in a linear
shear flow have been conducted from this initial condition.
Figure 3 indicates the dependence of inclination angle # on the
viscosity ratio (r= i/ tou)- It is shown that the increase in vis-
cosity ratio gives the decrease in inclination angle. A comparison
between our results and the results of Beaucourt et al. [3] is also
shown in the figure. Although their membrane model is similar to
ours, their numerical method is different from ours and the con-
straint to satisfy the area preserving condition of membrane sur-
face is also different. Even with these differences, it is interesting
to see that both results have shown the good agreements. Hence, it

35 T T —e— present (S,=0.8)
—&— present (S5,=0.9)
B 30r ~©~ Beaucourt et al. (S,=0.8)
g 251 -8~ Beaucourt et al. (S,,=0.9)
<
‘ic;’ 20+ b
@
5 15+ b
T
é 10+ b
5 | —
0
6

Viscosity ratio r[-]

Fig. 3 Dependence of inclination angle @ of 2D tank-treading
motion on viscosity ratio
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Fig. 4 Dependence of inclination angle 6, of 3D tank-treading
motion on viscosity ratio

is said that the present numerical method worked well and the
present membrane model can properly reproduce the solution for
the tank-treading motion of a vesicle.

3.2 3D Simulation of a Liposome. Next, we extend this
method for the three-dimensional simulations. As is the same as
two-dimensional cases, the initial shape is given by the solution of
an equilibrium shape without shear. The equilibrium shape be-
came ellipsoidal sticklike one, which is different from the well-
known biconcave shape of the RBC. The difference comes from
the membrane model. The present liposome model given by Eq.
(1) has a minimum energy equilibrium shape as an ellipsoidal
sticklike one.

Using this initial shape, three-dimensional simulation was con-
ducted for the deformable liposome in a linear shear flow. The
obtained results for the tank-treading motion are shown in Fig. 4.
The results by Kraus et al. [4] for the viscosity ratio of 1.0 are also
shown for the comparison. Although our numerical results show
the slightly smaller value than their results, reasonable agreement
is achieved. It should be mentioned that our membrane model has
a geometric constraint of the total surface area constant, while
Kraus et al. [4] gave the local surface area nearly kept constant.

In Fig. 4, it is shown that the inclination angle 6 decreases with
the increase in viscosity ratio. This tendency is exactly the same
as 2D case. However, there is a quantitative difference for this
inclination angle between 2D and 3D cases under the same swell-
ing and viscosity ratios. To compare this difference in more de-
tails, the dependence of the inclination angle on the swelling ratio
is shown in Fig. 5. The results are shown for both 2D and 3D
cases. It is illustrated that a 3D liposome shows the lower incli-
nation angle for the same swelling ratio. Since 2D and 3D are not
geometrically the same and the meaning of the swelling ratio is
different as explained for Egs. (8) and (9), it is not strange to have

| ~©=3-D Sy ap[— ' ' '
40 4

Inclination angle &, [degree]

i |
0.8 0.9 1
Swelling ratio S,,,[-]

Fig. 5 Dependence of inclination angle 6, of tank-treading mo-
tion on swelling ratio (comparison of 2D and 3D results)
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Fig. 6 Dependence of inclination angle 6, of tank-treading mo-
tion on swelling ratio (rearrangement of 2D and 3D results)

quantitatively different results in 2D and 3D. However, it is very
interesting to see that they show good agreements if the cross
section of the 3D simulation was considered as 2D results in the
symmetric plane of z=0 (Fig. 6). That is, if the 2D swelling ratio
is obtained from the cross section area in the symmetric plane of
the 3D simulation, this 2D discussion using the 3D results show
good agreement with the results of the 2D simulations.

Related to this tank-treading motion, the experiment was also
conducted in our group [18]. Liposomes were produced by the
so-called gentle hydration method and they are introduced in a
linear shear flow. Tank-treading angle was measured using the
high speed camera and microscopy. The comparisons of the tank-
treading shapes between the photos taken in the experiments and
the present numerical simulations are shown in Fig. 7. It is illus-
trated that good agreements are attained for both the shapes and
inclination angles. More quantitative comparison for the inclina-
tion angles among the present numerical simulation, our experi-
ment [18], experiment by Abkarian et al. [19], theory by Keller
and Skalak [20], and the simulation by Kraus et al. [4] are given
in Fig. 8. It illustrates that all the data show quantitatively good
agreement. It is noted that the theory by Keller and Skalak [20]
assumed the ellipsoidal shape and it is not the cases of our simu-
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Fig. 9 The motion of a RBC in a linear shear flow. (a) tank-
treading motion: u;,/po,;=0.35, y=950 1/s, and B=4.2
X102 dyn/cm. (b) tumbling motion: u;,/ sto4=6.2, y=950 1/s,

and B=4.2X10-% dyn/cm.

lations or the simulations of Kraus et al. [4]. This indicates that
the swelling ratio is more dominant factor than a small difference
of membrane model is.

3.3 3D Simulation of a Red Blood Cell and the Compari-
son With Liposome. Here, we discuss the dependence of differ-
ent membrane models. We use a hyperelastic membrane model for
a RBC. In the case of RBC simulation, the initial shape is given as
a biconcave discoid, which is formulated by Evans and Fung [16].
The initial condition of RBC in a linear shear flow has been illus-
trated in Fig. 2, where the initial inclination angle is set at /8.

Figures 9(a) and 9(b), respectively, illustrate the tank-treading
and the tumbling motion of RBC. In the case of Fig. 9(b), the ratio
of the viscosity between the inside and outside of the RBC is
around 6.2, and the swelling ratio is around 0.64, which are in the
actual range of the RBC properties. As shown in the figure, when
the simulation starts, the RBC starts tumbling in clockwise direc-
tion. Compared with the tumbling motion of “liposome” in the
same simulation condition, in which liposomes are extended in the
shear and the dynamic shape of rod and round plate in two differ-
ent directions are observed, the tumbling motion of the RBC
shows a different transient shape. This is due to the difference of
the membrane resistance to the flow shear stress. These instanta-
neous shapes are similar to the one observed in the experiment by
Fischer and Schonbein [21].

To investigate the effect of viscosity ratio, the viscosity ratio
between the inside and outside of the RBC was set to 0.35, which
does not occur in real situations. Under this condition, the tank-
treading motion of RBC occurred, as shown in Fig. 9(a). The
upper figures show the view of RBC in x-z plane, which is differ-
ent from the lower figures (in y-z plane). As shown in the figure,
the extension and reduction of the length of the shape are ob-
served. The angle between the x coordinate and the long axis of
the RBC keeps almost a steady value, and the tank-treading mo-
tion with the movement of membrane between two fluids with
different viscosities is observed. Compared with the deformation
of a liposome in a tank-treading motion, the liposome keeps ex-
tension before the rod shape is obtained, while for the deformation
of the RBC, with the change in elliptic shape, the length of the rod
of the RBC does not change obviously.

At last, we discuss the comparison of tank-treading angle be-
tween the liposomes and vesicles with hyperelastic RBC mem-
brane. The results are shown in Fig. 10. It is noted that the swell-
ing ratio of 0.8 is rather large as a RBC, so this is a kind of
vesicles that has a cell membrane structure like RBC. Under the
same swelling ratio and the viscosity ratio, the vesicles with RBC
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Fig. 10 The effect of membrane model to the inclination angle
of tank-treading motion

membrane models show the smaller inclination angle than those
with Helfrich [14] fluid membrane models: liposomes. The
vesicles with RBC membrane models also show an earlier transi-
tion from tank-treading. That is, the hyperelastic membrane model
for a RBC shows a stiffer behavior than that for a liposome in a
wide parameter range.

4 Conclusion

In this paper, the motion of a deformable vesicle in a linear
shear flow was discussed. Tank-treading motions were mainly dis-
cussed for liposome. Then, the effect of membrane model, 2D
fluid membrane for liposome and hyperelastic membrane for
RBC, were discussed. The following results were obtained.

(1) The present 2D results for the tank-treading motion show
good agreement with those by Beaucout et al. [3].

(2) 3D tank-treading motion shows qualitatively the same ten-
dency as that of 2D. Especially, if the 3D results are ana-
lyzed such as the 2D data at the cross section in a symmet-
ric plane, the inclination angle of the 3D simulations show
the excellent agreement with those of the 2D.

(3) The hyperelastic membrane model for a RBC shows a
stiffer behavior than that for a liposome. Under the same
swelling ratio and the viscosity ratio, the vesicles with RBC
membrane models show the smaller inclination angle than
those with Helfrich fluid membrane models. The vesicles
with RBC membrane models also show an earlier transition
from tank-treading to tumbling due to their stiff membrane
characteristic.
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Nomenclature
a = volumetric equivalent radius
B = shear stress coefficient
C = expansion coefficient of membrane surface
area
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co = spontaneous curvature
¢, ¢ = principal curvature of membrane
infinitesimal surface element
dV = infinitesimal volume element
= bending rigidity
= outward unit normal vector
= pressure
= tangential projection operator
vector for the transverse shear stress
= viscosity ratio
= swelling ratio
= in-plane surface stress tensor
= flow velocity field

Greek Symbols

cml oo Bt 5T
I

y = shear rate
A A, = principal strain
M = viscosity
v = kinematic viscosity of external fluid
6 = inclination angle of tank-treading motion
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1 Introduction

The streamline-upwind/Petrov—Galerkin (SUPG) formulation
of compressible flows is widely used in finite element flow com-
putations. The formulation was introduced, within a couple of
years following the introduction of the SUPG formulation of in-
compressible flows [1,2], in a NASA Technical Report [3]. A con-
cise version of the technical report was published as an AIAA
paper [4] and a more thorough version with additional examples
as a journal article [5], which has been more widely available than
the first two versions. The SUPG formulation of compressible
flows introduced in Refs. [3-5] was in the context of conservation
variables and without a shock-capturing term. Following Refs.
[3-5], the SUPG formulation of compressible flows was recast in
entropy variables and supplemented with a shock-capturing term
[6]. It was shown first in Ref. [7], and later in Ref. [8], that the
SUPG formulation introduced in Refs. [3-5], when supplemented
with a similar shock-capturing term, is very comparable in accu-
racy to the one that was recast in entropy variables.

The SUPG formulation of compressible flows, just like the
SUPG formulation of incompressible flows and most other stabi-
lized formulations following the two, involves a stabilization pa-
rameter that is mostly known as 7. This parameter represents a
measure of the local length scale (also known as “element
length”) and other parameters such as the element Reynolds and
Courant numbers. Various 7 definitions were proposed starting
with those in Refs. [1-5], followed by the one introduced in Ref.
[9], and those proposed in the subsequently reported SUPG meth-
ods. Here we will call the SUPG formulation introduced in Refs.
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[3-5] for compressible flows (SUPG)g,, and the set of 7s intro-
duced in conjunction with that formulation 7g,. The stabilized
formulation introduced in Ref. [9] for advection-diffusion reaction
equations included a shock-capturing term and a 7 definition that
takes into account the interaction between the shock-capturing and
SUPG terms. The 7 used in Ref. [7] with (SUPG)sg, is a slightly
modified version of 7g,. A shock-capturing parameter, which was
derived from its counterpart in the entropy variables and which we
will call here 8y;, was embedded in the shock-capturing term used
in Ref. [7]. Subsequent minor modifications of 7g, took into ac-
count the interaction between the shock-capturing and the
(SUPG)jg, terms in a fashion similar to how it was done in Ref. [9]
for advection-diffusion reaction equations. All these slightly
modified versions of 73, have always been used with the same Jy,
and we will categorize them here all under the label 73, \vop-

New ways of computing the 7s based on the element matrices
and vectors were introduced in Ref. [10] in the context of the
advection-diffusion equation and the Navier—Stokes equations of
incompressible flows. These new definitions are expressed in
terms of the ratios of the norms of the matrices or vectors. In Refs.
[11,12], the 7 definitions based on the element matrices were used
in conjunction with the (SUPG)g, formulation supplemented with
the shock-capturing term involving &;. In Ref. [13], these defini-
tions were extended to the edge-based implementation, which was
introduced in Ref. [14]. The edge-based implementation is com-
putationally more efficient than the element-based implementa-
tion.

The YZp shock-capturing was introduced in Refs. [15-17]. It is
based on using a simple residual-based shock-capturing parameter
and is less costly to compute than Jy;. It has options for smoother
or sharper computed shocks. It was tested in Refs. [18-20]. Those
test computations showed that the YZB shock-capturing param-
eters are not only much simpler than Jdy; but also superior in
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accuracy. In Ref. [21], the YZp shock-capturing was used in com-
bination with the variable subgrid scale (V-SGS) method, which
was introduced in Ref. [22] and was formulated for compressible
flows in conservation variables in Ref. [23].

In this paper, we extend the SUPG formulation with YZS
shock-capturing to the edge-based implementation. We carry out
test computations in 1D, 2D, and 3D and compare the perfor-
mance of the YZ shock-capturing parameter to the performance
of dy;. We also compare, in the context of these two versions of
the SUPG formulation, the computational efficiency of the
element- and edge-based data structures used in iterative compu-
tation of compressible flow problems. We describe the governing
equations in Sec. 2 and numerical formulation in Sec. 3, and
present the numerical examples in Sec. 4. The concluding remarks
are given in Sec. 5.

2 Governing Equations

The 3D equations of inviscid compressible flows can be written
as

JU  dF,

—=+==0

Jat  Ix;
where Q CR? and 1 €[0,T,,,]. The vector of conservation vari-

ables U and the vector of inviscid fluxes F; are given as

in Q X[0, Tl (1)

1 1 0
U u 8y
U=p\us (, Fi=puuy (+p\ 6 (2)
u3 us Y
e e u

Here p is the density, u=[u;,u,,us]" is the velocity vector, e is the
total energy density, p is the pressure, and J;; is the Kronecker
delta. The equation of state used here corresponds to the ideal gas
assumption. Alternatively, Eq. (1) can be written as

Ju Ju

—+A,—=0 in Q X [0,Tpal, =T (3)

Jat (;xi
Appropriate sets of boundary and initial conditions are assumed to
accompany Eq. (3).

3 Numerical Formulation

3.1 Finite Element Formulation. We assume that we have
constructed some suitably defined finite-dimensional trial solution
and test function spaces S" and V. Based on that, the SUPG
formulation [4,5,7] can be written as follows: find U” € " such
that VW":

nel
Ju” Ju” IW" Ju”
J w”.(—+A?—)dQ+Z T(— ANl —
Q ot l?xl‘ e=1 ¢ 5xk ot

nel

Jut aWh\ [ guU"
+ Af’a—>dQ +> ) (
i e=1Jq

VSHoc< o _)dﬂ=0

e

4)
At each time step, the coupled nonlinear equations involved are
solved with the predictor-multicorrector algorithm described for
compressible flows in Ref. [5]. An iterative technique with nodal-
block-diagonal preconditioner and GMRES update method [24] is
employed for solving the linear equation system involved. The
SUPG stabilization and shock-capturing parameters are denoted
by 7 and vgyoc. They will be discussed in Secs. 3.2-3.4.

3.2 Stabilization Parameters. In our test computations, we
compare the performance of the new stabilization parameters to
the performance of 7g, \mop, Which we use in the form 7
=7g>.mopl. Therefore, we first provide the definition of 735 \ops

021208-2 / Vol. 76, MARCH 2009

which is a product of an evolution process that started with Refs.
[3-5], continued with Ref. [9], reached maturity in Ref. [7], and
involved further adjustments in subsequent publications. The spe-
cific form of 7g,.mop given here is from Ref. [25]:

Tgo mop = Max(0, 7, + {(7, — 7)) (5)

2

o
= 5 D 6
3(1+2aCH) @ " (©)

h
T, = Te=
' ¢ zucc ' ° (ucl.')z

where 4 is an element length defined as the cubic root of the
element volume, and ¢, Cr, and u,. are defined as follows:

_ 2aCr
T 1+2aCr

ViU’
IVl

U At

r= , h
h

)

U.=c+u

Here ¢ is the acoustic speed, a is a parameter controlling the
stability and accuracy of the time-marching algorithm (set as «
=0.5 here), and At is the time-step size.

New ways of calculating the stabilization parameters in the
context of the (SUPG)g, were introduced in Refs. [15-17] and
tested in Refs. [18-20]. Here we provide from Refs. [15-17] the
version we use in our computations. For this purpose, we first
define the unit vector j=Vp//[|Vp"|. The stabilization parameter
Tugn 1s defined from its components corresponding to the
advection- and transient-dominated limits, 7qygn; and 7sygne. In
computing Tgygn; for each component of the test vector-function
W, the stabilization parameters 7§ n1> Tsugnt: and Tgugn (as-
sociated with p, pu, and pe, respectively) are defined by the fol-
lowing expression:

Nep -1
- _ _ h
TSUGN1 = TSUGN1 = TSUGNI = E lu". VN,| (8)
a=1
3 2
In computing Tgygne, the parameters 7§;6n2 Tsugne: a1d TSuaN

are defined as follows:

’ At
T§ueN2 = T8uGN2 = TsuaNe = 5 )

The parameters {,gy, TGN and 7{gy are calculated from their
components by using the r-switch [10]:

1 1 =1/r
Thon = + (10)
(T8uen)” (Thuann)”
1 1 =1/r
TUGN = < ” + ) (11)
(7suan2)”  (Tsuana)”
1 1 =1/r
TUGN = ( Pl r) (12)
(TSuen1) (TSuen2))
Typically r=2. Thus, the resulting diagonal stabilization-
parameter matrix 7ygy 1S written as
UGN
6N
TuGN = UGN (13)
TUGN
UGN

3.3 Shock-Capturing Parameters. We also compare the per-
formance of the new shock-capturing parameters to the perfor-
mance of ;. For that reason, we first provide the definition of dy;

[7]:
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U & ag aut]? |
81 = A== 2|2 (14)
0xy, A =1 119 Xy, Ay

where &;s are the element coordinates, and &0 is the Jacobian of
the transformation from the entropy variables to the conservation
variables.

The YZp shock-capturing was introduced in Refs. [15-17] and
tested in Refs. [18-20]. Here we provide from Refs. [15-17] the
version we use in our computations:

Nsd

VsHoC = ||Y_1Z|(E

a=1 i

h

B
HY-1U\|‘-B(—“;°°) (15)

where Y is a diagonal scaling matrix constructed from the refer-
ence values of the components of U:

(UDret
(Ud)rer
Y= (Us)ser (16)
(Upret
(Us)ret
gut - gu"
Z="—+Al— (17)
ot ox;
e -1
hshoc=2(2 i VNal) (18)
a=1

The parameter S is set as S=1 for smoother shocks and =2 for
sharper shocks. The compromise between the =1 and B=2 se-
lections was defined in Refs. [15-17] as the following averaged
expression for vgyoc:

VsHoc = %((VSHOC)B=1 + (VsHoc) g=2) (19)

3.4 Edge-Based Solver. Following the algebraic approach in
Ref. [14], the element matrices can be disassembled into their
edge contributions. For all elements sharing a given edge, one can
add their terms and construct the edge matrix, which is a 10
X 10 nonsymmetric matrix. The edge matrix is smaller than the
element matrix, which is 20X20, but the number of edges is
always greater than the number of elements. The number of terms
stored in the edge-based data structure requires less memory and
fewer computations than the element-based data structure. Note,
however, that different from element-based data structures, the
edge-based data structures require the scatter and add of element
contributions to the six edges. This is clearly an overhead, present
also when you use other data structures, as for instance, sparse
formats.

Further gains can be achieved when using a block-diagonal
preconditioner, as in our case. There is no need to store the edge
matrix block-diagonals but only the inverse of the global block-
diagonal B,. This way of performing the matrix-vector products,
either element or edge based, as presented in Ref. [26] for the
scalar transport equation, can be used for the problem at hand here
in the following manner:

ned

Ax=Bx+ >, (A))x’

s=1

(20)

ned

B,'Ax=B,'B,x + B >, (Al)x’

s=1

(21)
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Table 1 Computational requirements for the element- and
edge-based data structures with tetrahedral meshes

Storage ia. Flops
Element 300 nel 360 nel 600 nel
(1650N) (3520N) (4200N)
Edge 50 nel 90 nel 100 nel
(350N) (630N) (550N)
ned
B;'Ax=x+B;' > (A})x’ (22)

s=1

where “ned” is the number of edges, and Al is the matrix of
oft-diagonal terms associated with edge s.

We note that the resulting nonsymmetric edge matrix has 100
terms to be stored, minus the block-diagonal terms, which are 50.
Thus, there is only need to store half of the terms, since the in-
verted block-diagonals are required for preconditioning purposes.
We also note that this gain is more significant for the edge-based
data structure than it is for the element-based one; because for the
element-based approach only 100 of the 400 terms are in the
block-diagonal and do not need to be stored.

Table 1 shows, for computation of matrix-vector products with
five degrees of freedom and element- and edge-based data struc-
tures for tetrahedral meshes with N nodes, the storage require-
ments for the effective mass-matrix coefficients (storage), the
costs of indirect addressing (i.a.), and the floating point operations
(flops). According to the estimates given in Ref. [27] for tetrahe-
dral meshes, nel=5.5N and ned=7N. Table 1 demonstrates the
superiority of the edge-based data structure over the element-
based one, both in memory requirements and operation count. In
many cases, the edge-based data structure does not present a good
balance between floating point and i.a. operations. To improve this
ratio, several alternatives to the basic edge-based approach were
proposed in Ref. [28], which are based on reusing the already
gathered data as much as possible. This idea, combined with node
renumbering strategies, introduces further enhancements, as
shown in Ref. [28]. The basic approach is used here because it is
simpler and provides better computational performance for the
problems computed.

4 Numerical Examples

All coefficients of the effective mass matrix and residual vector
were calculated with the aid of a symbolic mathematical software,
resulting in a code with one single loop over the elements to
compute and assemble the edge-matrices and residual. The effec-
tive mass-matrix routine has around 6400 lines of code. All
meshes are made of linear tetrahedra. The flops count for comput-
ing 9 is 240, while for the YZB shock-capturing parameter
(vsnoc) it is just 160. In the computations presented, vgyoc iS
used in conjunction with the stabilization parameter given by Eq.
(13), and &y, is used with the stabilization parameter given by Eq.
(5). All units are omitted due to the nondimensionalization of the
variables involved.

4.1 1D Shock Tube. A shock tube problem is an essentially
1D flow discontinuity problem that provides a good test for com-
pressible flows simulations. The domain is a cylindrical or rectan-
gular tube, with a middle membrane barrier separating two initial
gas states at different pressures and densities. The pressure and
density can be high in one of the halves and low in the other. The
rupture of the middle barrier at time =0 allows the two halves to
interact. The well-known Sod shock tube benchmark problem is

MARCH 2009, Vol. 76 / 021208-3
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Fig. 1

1D shock tube. Mesh.

considered here. The solution contains simultaneously a shock
wave, a contact discontinuity, and an expansion fan. A reference
solution was obtained using a fine mesh with 1000 X 1 cells, each
divided into five tetrahedra. This solution is in agreement with the
analytical solution (see Ref. [29]). In our test computation, we use
a mesh with 100 X 1 cells, which is shown in Fig. 1.

The initial condition consists of p=1.0, u;=0.0, and p=1.0 on
the left side (0 =x; <0.5) and p=0.125, u;=0.0, and p=0.1 on the
right side (0.5=x;=1.0). The boundary conditions at x;=0 and
x;=1 are set to the values at the corresponding halves of the
domain. The velocity components u, and uj3 are set to zero. The
time-step size is 1073, and the simulation duration is 0.2. For the
preconditioned GMRES solver, 30 vectors are used in the Krylov
basis, with a maximum of 10 cycles and a tolerance of 107°.
Nonlinear tolerance is 107> and convergence is achieved at every
time step. We tested two different options for the reference values
used in Eq. (16). In the option denoted by vsgoc 1o, WE Use the
initial condition values for the left domain. In the option denoted
bY VSHOC previouss W€ Use the values from the previous iteration.
We show the solutions in Fig. 2, together with the solution ob-
tained with dy;. The Jy; solution is more dissipative and both YZf3
solutions capture the shocks better. The vgyoc 1o SOlution con-
verges in four to five iterations for all time steps, but the conver-
gence of the Vspoc previous SOlUtION stagnates. This is due to the
additional nonlinearity introduced by the reference values used in
computation of the shock-capturing parameter. In the subsequent
test computations in this paper, we will use fixed reference values,
typically those corresponding to the initial condition.

4.2 2D Flow in a Channel With a Step. The problem of a
wind tunnel containing a step was first described in Ref. [30].
Although it has no analytical solution, this problem is useful in
testing the performance of a method in handling unsteady shock
interactions in multiple dimensions. The 2D rectangular domain is
three units wide and one unit high. The step is between x;=0.6
and x;=3.0, with a height of 0.2 units. As boundary condition at
the step, the normal component of the velocity is set to zero. The
normal component of the velocity is zero also along the upper and
lower channel walls. The supersonic inflow conditions at the left
boundary are p=1.4, p=1.0, u;=3.0, and u,=0.0, corresponding
to a Mach number of 3. Because the condition at the outflow
boundary on the right is supersonic throughout the calculation, no
boundary condition is specified there. The initial conditions are set
equal to the inflow conditions, with #;=0.0 along the left edge of
the step. The mesh, which is shown in Fig. 3, has 58,509 nodes,
173,130 elements, and 290,142 edges.

The time-step size is 1073, and the test duration is 2.0. For the
preconditioned GMRES solver, 30 vectors are used in the Krylov
basis, with a maximum of 100 cycles and a tolerance of 107
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Fig. 2 1D shock tube. Solutions at {=0.2. (a) Density, (b) ve-
locity, and (c) pressure.

Nonlinear tolerance is 1072. As reference values in Eq. (16), we
use the initial conditions. Figures 4 and 5 show the density ob-
tained with d9; and wgyoc. We note that they show good agree-
ment with the benchmark solution [30].
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Fig. 3 2D flow in a channel with a step. Mesh until x;=0.7.

Figures 6 and 7 show the distribution of dy; and vgyoc. We note
that the two parameters have the same order of magnitude (0
< 89 <2.75X 1072 and 0 < vgyoc < 2.0 X 1072) but have different
distributions, with vgyoc mimicking the shock interactions.

4.3 3D Flow Around a Sphere. The sphere has a unit radius
and the Mach number is 3. We consider only half of the sphere to
obtain the steady-state solution. Figure 8 shows the dimensions of
the problem domain.

The far-field conditions are p,=1, u,.=(3,0,0)7, and e..=6.3.
We impose these far-field conditions at the left and upper bound-
aries. The flow is supersonic at the outflow boundary on the right,
and therefore no boundary condition is specified there. Along the

symmetry plane and on the cylinder surface the normal compo-
nent of the velocity is zero. The initial conditions are set to the
far-field conditions. The mesh, shown in Fig. 9, has 15,032 nodes,
78,915 elements, and 97,809 edges.

The time-step size is 1072, and the time-marching continues
until #=6. For the preconditioned GMRES solver, 25 vectors are
used in the Krylov basis, with a maximum of 50 cycles and a
tolerance of 1073, The number of nonlinear iterations per time step
is 3. As reference values in Eq. (16), we use the initial conditions.
Figures 10 and 11 show the density obtained with &y, and vgyoc.
The two are in good agreement.

Table 2 shows, for the element- and edge-based data structures,
the relative CPU times for the matrix evaluation, matrix-vector

(b)

(0)

Fig. 4 2D flow in a channel with a step. Density obtained with

b9¢- (a) 1=0.3, (b) t=0.6, and (c) t=1.2.

Journal of Applied Mechanics

(b)

(©

Fig. 5 2D flow in a channel with a step. Density obtained with
VsHoc: (a) t=0.3, (b) t=0.6, and (c) t=1.2.
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(0

Fig. 6 2D flow in a channel with a step. Distribution of 8g;. (a)
t=0.3, (b) t=0.6, and (c¢) t=1.2.

products in the GMRES iterations, and the total run times. Matrix
evaluation is somewhat slower for the edge-based data structure,
but this is very much compensated by the large reduction in the
CPU time involved in the matrix-vector products, resulting in
roughly 40% reduction in the total run time.

5 Concluding Remarks

We provided a comprehensive assessment of the stabilization
and shock-capturing parameters introduced recently for SUPG
formulation of compressible flows based on conservation vari-
ables. We focused on performance evaluation of the YZB shock-
capturing parameter. We used well-known 1D, 2D, and 3D test
problems with tetrahedral meshes. At each time step, the coupled
nonlinear equations involved were solved with the predictor-
multicorrector algorithm. An iterative technique with nodal-block-
diagonal preconditioner and GMRES update method was employed
for solving the linear equation system involved. We used an edge-
based data structure to store the Jacobian and perform the matrix-
vector products. In our test computations, we compared the YZ3
shock-capturing parameter to &y;, which was derived from its
counterpart in entropy variables. We also tested different options
for choosing the reference values used in YZS shock-capturing. In
addition to being simpler and requiring less floating point opera-
tions, YZB shock-capturing yields better shock quality. We pro-
vided an assessment of the computational efficiency of the edge-
based structure compared with the element-based one. Although
computing and storing the edge-matrices is a bit slower, matrix-
vector products are computed around five times faster, reducing
the total run time by about 40%.
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Fig. 7 2D flow in a channel with a step. Distribution of vgyoc.
(a) t=0.3, (b) t=0.6, and (¢) t=1.2.

16

Fig. 8 3D flow around a sphere. Dimensions of the problem
domain. The cylinder is located at x;=8.
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Fig. 11

3D flow around a sphere. Density obtained with vgyoc.

Table 2 3D flow around a sphere. Relative CPU time for the
element- and edge-based data structures.

Matrix evaluation Matrix-vector Total run
Element 0.831 1.000 1.000
Edge 1.000 0.198 0.599
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Computation of Inviscid
Supersonic Flows Around
Cylinders and Spheres With the
V-SGS Stabilization and YZp
Shock-Capturing

The YZB shock-capturing technique was introduced originally for use in combination
with the streamline-upwind/Petrov—Galerkin (SUPG) formulation of compressible flows
in conservation variables. It is a simple residual-based shock-capturing technique. Later
it was also combined with the variable subgrid scale (V-SGS) formulation of compress-
ible flows in conservation variables and tested on standard 2D test problems. The V-SGS
method is based on an approximation of the class of SGS models derived from the Hughes
variational multiscale method. In this paper, we carry out numerical experiments with
inviscid supersonic flows around cylinders and spheres to evaluate the performance of
the YZB shock-capturing combined with the V-SGS method. The cylinder computations
are carried out at Mach numbers 3 and 8, and the sphere computations are carried out
at Mach number 3. The results compare well to those obtained with the YZ shock-
capturing combined with the SUPG formulation, which were shown earlier to compare
very favorably to those obtained with the well established OVERFLOW code.

[DOL: 10.1115/1.3057496]

Keywords: supersonic flows, variable subgrid scale formulation, SUPG formulation,
YZB shock-capturing, cylinders and spheres

1 Introduction

The streamline-upwind/Petrov—Galerkin (SUPG) formulation
of compressible flows was first introduced in 1982, soon after the
introduction of the SUPG formulation of incompressible flows
[1,2]. This first SUPG formulation of compressible flows was in
the context of conservation variables (see Refs. [3,4]). It did not
involve any shock-capturing term. The test computations clearly
showed the need for extra measures at the shocks. The formula-
tion was later recast in entropy variables and supplemented with a
shock-capturing term [5]. This resulted in better shock profiles. In
a 1991 ASME paper [6], the SUPG formulation introduced in
Refs. [3,4] was supplemented with a very similar shock-capturing
term, which included a shock-capturing parameter that is now
called “&y;.” This shock-capturing parameter was derived from
the one given in Ref. [5] for the entropy variables. It was shown in
Ref. [6] that with the added shock-capturing term, the original
SUPG formulation of compressible flows in conservation vari-
ables is very comparable in accuracy to the SUPG formulation in
entropy variables. Shortly after that, the 2D test computations for
inviscid flows reported in Ref. [7] showed that the SUPG formu-
lation in conservation and entropy variables yielded indistinguish-
able results.

The YZp shock-capturing, which was introduced in Refs. [8,9],
is based on using a simple residual-based shock-capturing param-
eter. The new parameter is less costly to compute with than Jy;. It
has options for smoother or sharper computed shocks. A prelimi-
nary set of test computations with the YZ8 shock-capturing was
reported in Ref. [10] for inviscid supersonic flows. These were
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manuscript received July 9, 2008; published online January 26, 2009. Review con-
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standard 2D test problems with very simple geometries, and the
meshes were made of quadrilateral elements. For the same 2D test
problems, a more comprehensive set of computations with differ-
ent element types and mesh orientations was reported in Ref. [11].
In Ref. [12], numerical experiments were carried out for inviscid
supersonic flows around cylinders and spheres. The objective was
to evaluate the performance of the YZB shock-capturing in prob-
lems that are more challenging because of blunt geometries and
high Mach numbers. The YZg results were compared with those
obtained with &y;. For 2D structured meshes, the YZ3 results were
also compared with those obtained with the OVERFLOW code [13].
All those test computations showed that the YZ shock-capturing
parameters are not only much simpler than dy; but also superior in
accuracy.

The variable subgrid scale (V-SGS) method was first introduced
in Ref. [14] for the advection-diffusion-reaction equation and for
incompressible flows. It is based on an approximation of the class
of SGS models derived from the Hughes variational multiscale
(Hughes-VMS) method [15]. In Ref. [16], the V-SGS approach
was formulated for compressible flows in conservation variables.
In Ref. [17], the YZB shock-capturing was used in combination
the V-SGS method. The test problems computed in Ref. [17] were
the same as the standard 2D test problems mentioned in the pre-
vious paragraph. The results reported in Ref. [17] show that the
YZpB shock-capturing yields better performance also when it is
used in conjunction with the V-SGS method. In this paper, we
evaluate the performance of the YZB shock-capturing combined
with the V-SGS method by carrying out numerical experiments
with inviscid supersonic flows around cylinders and spheres. The
test problems are basically the cylinder and sphere test problems
mentioned in the previous paragraph. In Sec. 2 we review the
governing equations of compressible flows in conservation vari-
ables. The SUPG and V-SGS formulations are described in Sec. 3,
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and the YZp shock-capturing is discussed in Sec. 4. The test com-
putations are presented in Sec. 5, and the concluding remarks are
given in Sec. 6.

2 Navier-Stokes Equations of Compressible Flows

Let ) CR"™d be the spatial domain with boundary I', and let
(0,7) be the time domain. The symbols p, u, p, and e will repre-
sent the density, velocity, pressure, and total energy, respectively.
The Navier—Stokes equations of compressible flows can be writ-

ten on Q and Vr e (0,7) as
JU dF, JE,
—+—-—-R=0 (1)
ot l?x,' (9)(,-

where U=(p, pu,, pu,, pi3, pe)T is the vector of conservation vari-
ables and F; and E; are, respectively, the Euler and viscous flux
vectors,

u;p 0
uipuy + 6;p Ty
Fi=| wpus+ Spp |, E;= T (2)
u;pu3 + O3p T
u;(pe +p) —q;+ Ty

Here &;; are the components of the identity tensor I, g; are the
components of the heat flux vector, and 7}; are the components of
the Newtonian viscous stress tensor,

T=NV-u)l+2ue(u) (3)

where N and u(=pv) are the viscosity coefficients, v is the kine-
matic viscosity, and €(u) is the strain-rate tensor,

=3((Vu) + (Vu)") (4)

It is assumed that N=—2u/3. The equation of state used here
corresponds to the ideal gas assumption. The term R represents all
other components that might enter the equations, including the
external forces.

Equation (1) can further be written in the following form:

e(u

JU Ju ¢ Ju
—+A—-—|K;—|]-R=0 (5)
Jt (9xl' (9x,« : &xj
where
LT ©
Ut TVox

Appropriate sets of boundary and 1n1t1al conditions are assumed to
accompany Eq. (5).

3 SUPG and V-SGS Stabilizations

In describing the SUPG and V-SGS formulations of Eq. (5), we
assume that we have constructed some suitably defined finite-

dimensional trial solution and test function spaces S% and V{'J
Based on that, the SUPG [3,4,6] and V-SGS [16] formulations can
be written as follows: find U" e S{’J such that VW”" e V{’J,

Uh 8Uh
f wh. ( +Al— )dQ
a ot

‘xl

IJW" 0U”
+f (—) (Kg dQ) - f W' H"dl
o\ 9% Ix;

ey
—f Wi RMQ + D,
Q

e=1 J O°

Ju’ au' g Ju’
: [— +Al— - —(K’i— —-R"|dQ
ﬂt (9)(,- 19)6[

Pslab(wh)
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4 aW"\ [ au”
2 VW(E—)( %ﬂ 0 (7)
e=1 ¢ X; (9x,~
where H” represents the natural boundary conditions associated
with Eq. (5) and 'y is the part of the boundary where such bound-
ary conditions are specified. The vector operator Py, (W") takes
the following forms for the SUPG and V-SGS stabilizations, re-
spectively:

P n(W") = Pupg(W") (®)
P n(W') = Pyggs(W") )
where
Wh
Psupg(WH) = |:TSUPG<8(?_) ]AZ (10)
Xk
W W
vaas(Wh) = [(AZ)T< (98 ) + i((K?k)T< 2 ))} TVSGS
Xy ax; Ixy
(11)

The diagonal matrices 7gypg and 7ysgs are the SUPG and V-SGS
stabilization parameters. The expression for 75ypg can be found in
Refs. [8-12].

The expression for 7ysgs used in the computations reported
here is a modified version of the expression given in Ref. [16]. We
describe those modifications here with the notation used in Ref.
[16]. In calculating the components of Tyggs, namely, 75¢qs.
Tysase and 74ggs, instead of using the expressions given by Egs.
(62) and (63) in Ref. [16], we use the “r-switch” [18] combination
of their directional components,

-1/r
! ! 1)) , Vme{pue (12)

Nsgs = + +
e @ﬁy (7)) ()

where &s are the element coordinates and, typically, r=2. The
directional stabilization parameters for the momentum and energy
balance equations are given as

7e = (150)¢ (1 + f(&.Pey)),

where (7 c)§ is the mean value of the directional stabilization

Vm e {u,e} (13)

parameter, Peg_s are the directional element Peclet numbers, and
the functional form f(§,~,Pe’§'f) is given in Ref. [16]. The directional
stabilization parameter for the mass balance equation is given as

7% = (50)e (1 + £(£))

For inviscid flows, the directional stabilization parameters for the
mass, momentum, and energy balance equations are all given as

7= () (14 /(6). (15)

For the functional form f(¢;), instead of using the expression
given by Eq. (78) in Ref. [16], we use the following expression:

(14)

YV m e {p,u,e}

f&)=- (16)

ug_

—¢& (no sum)
lug]

where u;s are the advection components defined along the ele-
ment coordinates. We also modify how those advection compo-
nents are defined. Instead of using the expression given by Eq.
(71) in Ref. [16], we calculate them by solving the following
equation system:

(e§1 . efl)ugl + ((‘3§] . E§Z)M§2 + (E§l . e§3)u§3 = e§] DN
(e§2 . egl)l/lé] + (e§2 . eg:z)ugz + (e§2 . e§3)u§3 = e§2 DN
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(e§3 . egl)ugl + (e§3 . egz)ugz + (e§3 . e§3)u§3 = 853 -\ (17)

where es are unit vectors along the element coordinates and A is
a vector constructed in Ref. [16] from the eigenvalue definitions
given in Ref. [16] for the Euler (inviscid) part of the system given
by Eq. (5). For completeness, we provide here the definition of A,

1
A=(1+—)u
M

where M is the Mach number. The shock-capturing parameter is
denoted by v, It was discussed briefly in Sec. 1 and will further
be discussed in Sec. 4.

(18)

4 YZp Shock-Capturing
In the “YZ” version of the YZf shock-capturing, vg,. was

defined in Refs. [8—12] as
B2-1
2 ( hshoc ) A
2
This is the version we use in the computations we report in this

paper. In Eq. (19), Y is a diagonal scaling matrix constructed from
the reference values of the components of U,

Nsd

Vshoe = ”Y_IZ” ( E

i=1

Y—lé_Uh

pe (19)

i

(Ul)ref 0 0 0 0
0 (U2)re(' 0 0 0
Y= 0 0 (US)ref 0 0 (20)
0 0 0 (U4)ref 0
| 0 0 0 0 (Us)ref _
au"
Z=Al— (21)
ox;
and
Ny -1
hshoc = hJGN = 2(2 ‘j ) VNa|) (22)
a=1
where
\k
i=rc (23)
IVl

The parameter 8 is set as B=1 for smoother computed shocks and
as B=2 for sharper shocks.

Remark 1. When the expression given by Eq. (19) was origi-
nally introduced in Refs. [8,9], the intent was to have Z represent
the residual and thus make v, residual based. This point was
made explicitly in Refs. [11,12] by stating that the YZB shock-
capturing parameters were “based on scaled residuals.” This was
the motivation behind the term |[Y~'Z| in the expression. The
selections given in Refs. [8,9] for Z represent the steady-state and
time-dependent versions of the residual for inviscid flows with no
source or external-force terms. The terms with the exponents
B/2—-1 and S generate the correct local length scale.

Versions of vy, that take into account the Mach number and
shock intensity across a shock were proposed in Refs. [11,12]. In
these references, vy, given by Eq. (19) is modified as follows:

Vol by
Vshoe < Vsho(:(l + <H P ” 5hUL)UWI/hM - 1>> (24)
Pref
where “(-++)” is the Macaulay bracket,
0, x=y
(x-y)= (25)
X—=y, x>y

The reference density p, is defined as
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Fig. 1 2D flow around a cylinder. Structured mesh with 4096
quadrilateral elements and 4225 nodes.

Pref = pinl"<_ (26)
inf
where p;,r is the density at the inflow and pg, is a scaling density.
In defining py,, one of the options considered in Refs. [8—12] was
Psca=Pint- For flows with supersonic inflow and shocks, the other
options considered were py.,=p, (see Refs. [11,12]) and py.,=ps
—p; (see Ref. [12]), where p; and p, are the density values before
and after a normal shock corresponding to the inflow Mach num-
ber. The parameters b,;, br, and bp can each be set to 1 for
smoother shocks and 2 for sharper shocks. Equation (24), without
the exponent 2/by, was originally introduced in Ref. [11]. With
this expression, the definition of the shock-capturing viscosity
takes into account the Mach number and shock intensity across a
shock. The shock intensity is represented by the term
(IV p"|rghoe! Prer)> Which is a scaled measure of the jump in den-
sity. The Mach number is represented by the term (M'/m—1),

which becomes active for M > 1.

5 Test Computations

As test problems, we consider steady-state cases in 2D and 3D.
In all test computations, we use B=1. In Eq. (20), we set (U) e to
the inflow value of p, set (Us),ep, (Uz)pefs and (Uy),e to the inflow
value of plu||, and set (Us), to the inflow value of pe. In Eq. (24),
unless stated otherwise, we set bp=2.

5.1 2D Flow Around a Cylinder. We compute this case at
M =3 and M =8, with a structured mesh. Figure 1 shows the mesh,
which has 4096 quadrilateral elements and 4225 nodes. The test
problem and the mesh are essentially identical to those reported in
Ref. [12]. In computational units, the inflow density and velocity
are 1.0 and (1,0). The inflow value of the total energy is 0.6984 at
M=3 and 0.5279 at M=8. At the inflow boundary, we specify all
conservation variables to be equal to their inflow values. On the
cylinder surface and horizontal boundary, we specify the normal
component of the velocity to be zero. No boundary conditions are
specified at the outflow boundary.

Figures 2—4 show the results obtained for M=3. The results
obtained with by,=2 and br=0 are very close to those obtained
with by,=1, bg=1, and py.,=p,. The results obtained with by,=1
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Fig. 2 2D flow around a cylinder at /=3 Mach number. Com-
puted with by,=2 and bg=0.

and bp=0 show slightly more dissipation than the other two YZ8
results. These results and trends are very close to those reported in
Ref. [12].

Figures 5-7 show the results obtained for M =8. These results
were obtained with the same three types of YZf shock-capturing
we had for M=3. These results are also very close to those re-
ported in Ref. [12].
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—— Y=1.0 A
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Fig. 3 2D flow around a cylinder at M=3 Mach number. Com-
puted with by=1 and bg=0.
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Fig. 4 2D flow around a cylinder at M=3 Mach number. Com-
puted with by=1, bg=1, and pg.,=p,-
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Fig. 5 2D flow around a cylinder at /=8 Mach number. Com-
puted with by=2 and bg=0.

5.2 3D Flow Around a Sphere. In this test problem, which is
essentially the same as the one reported in Ref. [12], we have
M=3. While an unstructured mesh was used in Ref. [12], here we
use a block-structured mesh. Figure 8 shows the mesh, which has
52,896 hexahedral elements and 56,760 nodes. In computational
units, the inflow density and velocity are 1.0 and (0,—1,0). The
inflow value of the total energy is 0.6984. At the inflow boundary,
we specify all conservation variables to be equal to their inflow

Mach

Fig. 6 2D flow around a cylinder at M=8 Mach number. Com-
puted with by=1 and bg=0.

10 T T T T T

Mach

Fig. 7 2D flow around a cylinder at M=8 Mach number. Com-
puted with by=1, bg=1, and ps.,=p,.
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Fig. 8 3D flow around a sphere. Block-structured mesh with
52,896 hexahedral elements and 56,760 nodes.

values. On the sphere surface and horizontal boundary, we specify
the normal component of the velocity to be zero. No boundary
conditions are specified at the outflow boundary.

Figures 9 and 10 show the results obtained with by,=1 and
br=0. Figure 10 represents the only test computation where we
activate the parameter by by setting it as bgp=1. As expected, this
results in more dissipation. These results and trends are close to
those reported in Ref. [12].

6 Concluding Remarks

We carried out an extensive set of numerical experiments with
inviscid supersonic flows around cylinders and spheres to evaluate
the performance of the YZB shock-capturing combined with the
V-SGS method. The YZB shock-capturing technique was intro-
duced originally for use in combination with the SUPG formula-
tion of compressible flows in conservation variables. It is simpler
than the shock-capturing parameter &y, which was derived in
1991 from a shock-capturing parameter given for the entropy vari-
ables. The V-SGS method is based on an approximation of the
class of SGS models derived from the Hughes-VMS method. As
test cases, we computed 2D flow around a cylinder at Mach num-
bers 3 and 8 and 3D flow around a sphere at Mach number 3 using
a structured mesh with quadrilateral elements in 2D and a block-

Fig. 9 3D flow around a sphere at =3 Mach number. Com-
puted with by=1 and bg=0.
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Fig. 10 3D flow around a sphere at M=3 Mach number. Com-
puted with by=1, bg=0, and bg=1.

structured mesh with hexahedral elements in 3D. The results and
shock qualities obtained from these test computations are very
close to those obtained with the YZgB shock-capturing combined
with the SUPG formulation, which were shown in an earlier ar-
ticle to compare very favorably to the results obtained with the
well established OVERFLOW code.
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Time-Derivative Preconditioning
Methods for Multicomponent
Flows—Part |: Riemann
Problems

A time-derivative preconditioned system of equations suitable for the numerical simula-
tion of inviscid multicomponent and multiphase flows at all speeds is described. The
system is shown to be hyperbolic in time and remains well conditioned in the incompress-
ible limit, allowing time marching numerical methods to remain an efficient solution
strategy. It is well known that the application of conservative numerical methods to
multicomponent flows containing sharp fluid interfaces will generate nonphysical pres-
sure and velocity oscillations across the component interface. These oscillations may lead
to stability problems when the interface separates fluids with large density ratio, such as
water and air. The effect of which may lead to the requirement of small physical time
steps and slow subiteration convergence for implicit time marching numerical methods.
At low speeds the use of nonconservative methods may be considered. In this paper a
characteristic-based preconditioned nonconservative method is described. This method
preserves pressure and velocity equilibrium across fluid interfaces, obtains density ratio
independent stability and convergence, and remains well conditioned in the incompress-
ible limit of the equations. To extend the method to transonic and supersonic flows
containing shocks, a hybrid formulation is described, which combines a conservative
preconditioned Roe method with the nonconservative preconditioned characteristic-based
method. The hybrid method retains the pressure and velocity equilibrium at component
interfaces and converges to the physically correct weak solution. To demonstrate the
effectiveness of the nonconservative and hybrid approaches, a series of one-dimensional
multicomponent Riemann problems is solved with each of the methods. The solutions are
compared with the exact solution to the Riemann problem, and stability of the numerical
methods are discussed. [DOI: 10.1115/1.3072905]
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must be developed. As a first step toward this goal, a time-
derivative preconditioned numerical method is described for the
simulation of multicomponent/multiphase inviscid compressible
fluids obeying an arbitrary equation of state. The formulation is an
extension of the single component compressible formulation pre-
sented in Ref. [3] to multicomponent mixtures.

It has been established that time marching numerical methods
used to solve the compressible equations become inefficient and
lose accuracy when applied to low speed flows [4,5]. It has also
been demonstrated that conservative numerical methods applied
to multicomponent flows produce nonphysical pressure and veloc-

1 Introduction

Many propulsion related flow applications require modeling of
multicomponent/multiphase flows over a wide range of Mach
numbers, for example, the low speed flow of liquid propellants
through the low pressure fuel turbopump (LPFTP) in the space
shuttle main engine (SSME), see Ref. [1]. In this case liquid pro-
pellant is pumped from low to high pressures where cavitation is
likely to occur and may adversely affect the efficiency of the
propulsion system. Another example is the overpressure suppres-
sion system activated during the launch of a space vehicle, see
Ref. [2]. During lift off, initial pressure waves generated at igni-

tion reflect from the ground back to the vehicle, which may effect
its stability. The suppression system consists of a water injection
system and water trough covers located in the exhaust holes on
the launch platform. When the plume of chemically reacting ex-
haust gases enters the exhaust holes, water is injected and the
water baths vaporize to suppress the ignition overpressure phe-
nomenon. The exhaust plume travels at supersonic speeds as it
leaves the nozzle while the liquid water jets are nearly incom-
pressible. In order to simulate this complex physical phenomenon,
accurate and efficient numerical methods capable of modeling
multicomponent/multiphase chemically reacting flow physics

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received January 31, 2008; final manu-
script received July 10, 2008; published online February 4, 2009. Review conducted
by Tayfun E. Tezduyar.
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ity oscillations across fluid interfaces [6—10]. In this work a time-
derivative preconditioned system of equations for inviscid multi-
component is described along with a characteristic-based
nonconservative numerical method, which eliminates the non-
physical behavior across fluid interfaces and remains well condi-
tioned in the low speed limit. The new nonconservative method is
an extension of the split coefficient matrix (SCM) method, devel-
oped by Chakravarthy et al. [11], to low speed flows utilizing
time-derivative preconditioning and a specific set of primitive
variables that preserve pressure and velocity equilibrium across
component interfaces. Additionally, it is well known that noncon-
servative methods do not converge to the physically correct weak
solution when shock waves are present in the flow field. In order
to obtain a numerical method capable of maintaining pressure and
velocity equilibrium across component interfaces, to converge to
the correct weak solution for high speed flows, and to remain well
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conditioned in the incompressible limit, the authors have devel-
oped a hybrid formulation combining the nonconservative precon-
ditioned SCM method with a conservative preconditioned Roe
(PROE) method. The hybrid method (denoted HYBR) utilizes the
conservative method almost everywhere and reduces to the non-
conservative method only near fluid interfaces such that nonphysi-
cal oscillations are not generated. The resulting method is accurate
and robust for solving multicomponent flows at all flow speeds.
Alternative strategies have been implemented using interface
tracking in the finite element framework, see Ref. [12].

Part I of this paper is organized as follows. First, the time-
derivative preconditioned system of equations is presented. Next,
the numerical discretization of the preconditioned equations is de-
scribed, including the conservative PROE method, the nonconser-
vative preconditioned split coefficient matrix (PSCM) method,
and the hybrid HYBR method. Then, a series of one-dimensional
multicomponent Riemann problems is solved using each of the
methods. Each of the methods is compared with the exact solution
of the Riemann problem, and stability and performance of the
methods are also discussed. Application of the methods to multi-
dimensional problems are reported in Part II of this paper.

2  Formulation

The concept of time-derivative preconditioning to modify the
convergence properties of time marching numerical methods was
first developed by Chorin [13] for the steady incompressible
Navier—Stokes equations. The artificial compressibility method
enabled well-established time marching solution strategies, origi-
nally developed for transonic flow calculations, to be applied to
steady incompressible flows. These methods were extended to un-
steady three-dimensional flows with complex geometries, see
Refs. [14-16]. Extension of the artificial compressibility concept
to low speed compressible flows started with work on low Mach
number perturbation expansions of the compressible equations
performed by Rehm and Baum [17] as well as by Klainerman and
Majda [18,19]. This perturbation analysis stimulated the generali-
zation of the artificial compressibility method to time-derivative
preconditioning methods for compressible flows, which first ap-
peared in literature in Refs. [20,21,4,22,5]. The original motiva-
tion of time-derivative preconditioning was to reduce the stiffness
associated with characteristic speeds of the compressible equa-
tions in the low speed limit. The local preconditioning allowed the
time marching method to avoid the deterioration of the conver-
gence rate that nonpreconditioned methods experienced when ap-
plied to low speed flows. It was later discovered that the accuracy
of the numerical solutions was also improved by low speed pre-
conditioning through the modification of the artificial dissipation
present in the numerical fluxes. Application of time-derivative
preconditioning methods to multicomponent/multiphase flows is
relatively new, see Refs. [23-28]. In the aforementioned refer-
ences, no discussion of the nonphysical pressure and velocity os-
cillations generated across a fluid interface by conservative nu-
merical methods is presented. This nonphysical behavior must be
included when assessing the validity of a numerical method.

In this section, the time-derivative preconditioned system of
equations is described for an inviscid compressible mixture of
fluid components, each obeying an arbitrary equation of state. The
fluid components may represent different gas species as in multi-
species reacting flows or different fluid phases as in multiphase
cavitating flows, with the restriction that each component is as-
sumed to maintain an equilibrium pressure, velocity, and tempera-
ture. This allows each fluid component to have there own indi-
vidual densities, enthalpies, entropies, sound speeds, etc. To
ensure that the equations remain well conditioned in the low speed
limit, time-derivative preconditioning is added to the system, as
described in Refs. [3,29].

021210-2 / Vol. 76, MARCH 2009

The time-derivative preconditioned system of equations for an
inviscid N-component mixture of compressible fluids written in
strong conservation law form for a nonorthogonal curvilinear co-
ordinate system (&(x,y,f), 7(x,y,t) is given by

00, 0 oF oG

—+—+ + =0 1
Pos ot 9 ang )
where
p p
u pu
v pU
o=J'\ T |, W=r'pH-p
Y, pY,
_YN—I_ _pYN—l J
pU pV
pUu+&p pVu+ ,p
pUv +&p pVo + iyp
F=lpuH-&p | C=|pVH-7p @
pUY, pVY,
L pUY L pPVYn

Note that both a preconditioned pseudo-time-derivative in s and
physical time derivative in ¢ are included in the formulation such
that time accurate flows can be modeled using the dual time step-
ping method. Standard notation is used for the fluid dynamic vari-
ables pressure p, velocity components u and v, and temperature 7.
The mixture fluid properties are represented by p for the mixture
density, H=h+(u*>+v?)/2 for the mixture total enthalpy, and / for
the mixture specific enthalpy. The mass fraction of the ith fluid
component is represented by Y, fori=1,...,N—1, where the mass
fraction of the Nth component is given by the saturation condition

N-1
Yy=1- 2 Y; (3)
=1

The mixture properties are defined using either Amagat’s and Dal-
ton’s mixture laws, see Ref. [25] for details. These definitions are
given as follows:

N
i

1 Y
mixture density —= E
p o pipT)
N
mixture internal energy e = 2 ei(p,1Y;
i=1
N
mixture enthalpy h= E hi(p,T)Y;
i=1
N
mixture entropy s= 2 s{(p,DY; (4)
i=1

Two thermodynamic quantities are necessary to define the thermo-
dynamic state of an individual component. Since the pressure and
temperature are assumed to be in equilibrium for all components
they are a natural choice. This choice is implicit in the mixture
property definitions given in Eq. (4). To close the system of equa-
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tions, an equation of state for each individual component of the
fluid is required.
The scaled metric terms are given by

éngx/‘lzym éyzfy/.lz—

é:t =& =~ xtéx - ytéy
f?x: 77x/‘]=_y§a 77\ 77y/] X
J
P,’J 0 0 pr
up,, p 0 upr
vp, 0 p  vpr

U',=| Hp,+ph,

Y 1P,'; 0 0 Yipr
YN—1P,’, 0 0 Yy_1pr
where the partial derivatives of the material properties
PpsPTPY, -5 Py,, | and h ,hT,hyl,...,hy]\F] are defined as
N
Yo dh oh;
LSl o ©)
o pidp’ dp T op
Y,dp; h oh;
PSR Y ™
o1 Pi T’ 9T o 0T
17 1 1 doh
_p=pz(_-_), g e
Y, PN P1 Y,
)
d 1 1 oh
£ =P2(_—_), =hy_1—hy (10)
¥y PN PN-1 I¥n_y
and the local preconditioning parameter pl’7 is defined by
pr_i_pT(] —Phg) (11)
r V,z, phy
and the characteristic velocity scale is
Vi =min(c,max(U, L,/ Aty B)) (12)

where c is the isentropic sound speed of the mixture given by

2_ Py
phyp, + pr(1 — phy,)

the local velocity U=\u?+0v?, Ly, and Aty are the reference
length and time scales of the unsteady phenomenon, and >0 is
a user defined constant that avoids division by zero in the evalu-
ation of p’. Note that as the characteristic velocity scale ap-
proaches the physical sound speed the preconditioning system ap-
proaches the nonpreconditioned since I',— dW/dQ as pp—> Pp-
Derivation of the preconditioned is described in Ref. [3] as well as
in Ref. [29]. Additionally, the artificial sound speed, which will
appear in the eigenvalue analysis of the preconditioned system, is
defined similar to the physical sound speed as

(13)
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-1 pu pv Hpp+phy Hpy +phy

W= 1 ==X, 7, _ytﬁy
and the scaled contravariant velocities are

l}zé,+ ué}+vé,, and V= +ui+v7,

where the inverse of the determinant of the Jacobian used in the
scaling above is given by

-1 _
T =Xy = xpye
The local time-derivative preconditioning matrix is defined as

Pr, Py,_,

upy, Upy,._,

Upy, UPy,_,

Hpy,  + phyN_1 (5)
Yipy +p Yipy,
Yy_1py, Yy 1Py, +p
[
' phy

= (14)
phrp,+ pr(1 - ph,)
where p, has been replaced by pl',.

The time-derivative preconditioned system of equations defined
above is hyperbolic in pseudotime s, provided the equations of
state are chosen such that the nonpreconditioned system remains
hyperbolic in physical time ¢. The eigenvalues of the precondi-
tioned system in the é-coordinate direction are given by

il 2) T2 )
ol 2) T

X3=X4=U

(15)

where d=php,+pr(1-ph,) and d’:pthl’,+pT(1 —ph,,). Similar
relations hold for the eigenvalues in the # direction. Note that as
p! approaches the value of the physical material derivative Py
=dp/dp then d’ — d and the eigenvalues reduce to the eigenvalues
of the nonpreconditioned system. Please refer to Ref. [29] for the
explicit form of the eigenvalue/eigenvector decompositions.

3 Numerical Method

An efficient time marching numerical method is described for
approximating the solution of the time-derivative preconditioned
multicomponent flow model described in Sec. 2. For steady state
analysis, the physical time-derivative terms are simply omitted
from the formulation. Three discretization strategies are outlined
for the convective flux derivatives. These include the well known
conservative PROE method, the new nonconservative PSCM
method, and a conservative/nonconservative hybrid combination
of the two methods denoted the HYBR method.

Conservative discretization methods have become the de facto
standard for the compressible flow equations. It was shown by
Lax and Wendroff [30] that convergent numerical discretizations
of hyperbolic equations in discrete conservation law form con-
verge to the correct discontinuous weak solution when shocks are
present. Although the use of conservative methods is necessary for
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Fig. 1

flows containing shocks (unless shock fitting/tracking is used),
many low speed compressible flow solutions are free of shocks.
Additionally, the use of conservative methods for multicomponent
flows generates nonphysical pressure and velocity oscillations
across the component interface. For smooth solutions the advan-
tages of a conservative method become questionable, and efficient
nonconservative methods should be considered, see, for example,
Ref. [31]. When the nonconservative method described below is
applied to transonic flows with shocks, the solution does converge
to a weak solution of the governing system of equations, but it
does not converge to the physically correct entropy satisfying
weak solution. In order to model multicomponent flows that con-
tain shock waves, a conservative/nonconservative hybrid method
is described.

3.1 Conservative Formulation. The conservative PROE
method, developed by van Leer et al. [32], is briefly described.
First, the governing equations are written in semidiscrete conser-
vative finite difference form as

021210-4 / Vol. 76, MARCH 2009
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Results for Riemann problem | (top to bottom): pressure, velocity, temperature, and mass fraction

Q9 + Fiin=Fip + Grin—Gran

r
P s A& An

0 (16)

where F i+172 and 6k+1/2 are the numerical fluxes in the & and 7
coordinate directions, respectively, while A¢ and A are typically
chosen to be one in the computational domain. Note that the
physical time derivative has been ignored and will only be con-
sidered when the dual time formulation for unsteady analysis is
discussed. The preconditioned Roe numerical flux in the ¢ direc-
tion is given by

_ 1 . N _ n
Fiap= E[F(an) +F(Q)) - Fp(Qj+1/2)|F;IA(Q_]'+1/2)|(Q]'+1 -0))]
(17)

The preconditioning matrix I', and the absolute value of the pre-
conditioned flux Jacobian |T ;1A|=1§§|/§§\1§1 are evaluated at Q,
where Q is some symmetric average of the primitive variables Q;
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Fig. 2 Results for Riemann problem Il (top to bottom): pressure, velocity, temperature, and mass fraction

and Qj,;. In the present implementation Q takes the form

/ —
5 VPj+1Qjs1 +VP,Q)
0o 2= —
VPj+1+Vp;
Although the density weighted average is used, the method de-
scribed above does not satisfy the discrete Rankine—Hugoniot
jump conditions; therefore it is not Roe’s method in the strict
sense of Roe [33]. The method is conservative and does satisfy all

other Roe properties, so weak solutions are correctly captured.

(18)

Additionally, the arithmetic average Q:%(Qj+1+Qj) was also
tested, but the density weighted average proved more robust for
multiphase flows with large density ratios.

3.2 Nonconservative Formulation. The nonconservative
SCM method, developed by Chakravarthy et al. [11], utilizes a
characteristic-based splitting similar to the conservative Steger—
Warming flux vector splitting method. When the standard SCM
method is applied to low speed flows it suffers from the same
convergence and accuracy problems as other nonpreconditioned
time marching methods. An extension of the SCM method to
low speed flows using time-derivative preconditioning and an
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eigenvalue decomposition based on the primitive variables
O=(p,u,v,T)T was described in Ref. [3]. This approach is
easily extended to the preconditioned multicomponent model
described in Sec. 2. By choosing the primitive variables Q
=(p,u,v,T.Y,....Yn_1)T, pressure and velocity equilibrium
across component interfaces is guaranteed; a proof of this is given
in Ref. [29]. A brief description of the method is presented below.

To begin, the preconditioned multicomponent flow model can
be rewritten in the nonconservative quasilinear form as

90 "0 N
—Q+F;1A—Q +I"IB—Q=0
Ay

a ot "oy (19)

where F;IA and F;lé are the preconditioned flux Jacobians,
which can be factorized using there eigenvalue decompositions,

Iég/ggli’gl and Iénﬁnlé;ll, respectively. Once factorized the Jacobi-
ans are split into their positive and negative eigenvalue contribu-
tions, similar to the Steger—Warming splitting but using the primi-
tive variables
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Fig. 3 Results for Riemann problem Il (top to bottom): pressure, velocity, temperature, and mass fraction

DA p-l_p A+h-1, p R-p-1

RAR = ReAeRy + ReA R,
and similarly for the # direction flux Jacobian. Note that no as-
sumption of flux homogeneity is required since the method is

nonconservative. Define the positive and negative nonconserva-
tive flux derivatives as

OF* .« o a0 0G* A a0
P RARL ana =R ACRL
o0& € an K
The split equations are rewritten as
90 oFt 9F 9Gt G

—+ + + +

ds d& dE  dm  Iny
Note that all of the algebraic manipulations have been performed
on the continuous differential model. In the split form, the
positive/negative flux derivatives can be discretized using upwind
biased differencing. In the original SCM method the eigenvalue
decompositions were evaluated at the grid points. Later, Lombard
et al. [34] showed that by evaluating the eigenvalue decomposi-
tion using an upwind biased average, certain properties (such as
conservation in the case of conservative supra-characteristic
method (CSCM)) can be obtained. Here the symmetric density

(20)
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weighted average, é, as described above, is used to evaluate the
eigenvalue decomposition. Although this choice does not lead to a
conservative method, it does result in a robust method for large
density ratio flows. The first order upwind difference approxima-
tion to the positive/negative flux derivative in the ¢ direction is
given by

oF o o 0.
(a_g)j_m = Rf(Qj—l/Z)Ag(Qj_l/z)R§1(Qj_llz)|:_1A_§L1]
and

JF~ o s
(a_g)jﬂ/z - Rf(QjH/Z)A‘f(Qf“/Z)Rgl(Qj+1/2)[T]

For higher order spatial discretizations including limiters the
method outlined in Ref. [34] is used.

3.3 Hybrid Formulation. Hybrid conservative/
nonconservative methods are not new; they were originally devel-
oped for single component flows in which the more efficient non-
conservative method is used away from shocks and a more
computationally expensive conservative method is used in the vi-

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



cinity of shock discontinuities. For example, Daywitt et al. [35]
used the SCM method for steady supersonic flow calculations
around blunt bodies where shock fitting was used for the external
shock and a local switch to a high-resolution conservative scheme
near embedded shocks. Harabetian and Pego [36] developed a
hybrid method for the unsteady Euler equations and demonstrated
its efficiency over using a strictly conservative method throughout
the domain. Similar hybrid methods have been developed by Toro
[37], and the hybrid concept has even been used to construct
conservative/nonconservative methods known as adaptive Rie-
mann solvers, which switch from one particular approximate Rie-
mann solver to another depending on the local flow features, see
Ref. [38]. Hybrid methods applied to multicomponent flows in-
clude the methods developed by Karni [8] and Ivings et al. [39].
Here a new time-derivative preconditioned hybrid method is de-
veloped, which utilizes both the PROE and PSCM methods de-
scribed above. To begin, the switching strategy is discussed and a
simple switching function that takes on a value of zero near sharp
component interfaces and a value of 1 away from the interface.
This means that either the conservative method or the nonconser-
vative method is used at any particular grid point, and not a com-
bination of the two, which could lead to consistency problems.
Following Ref. [8], the local changes in the mass fraction variable
are used to determine if a sharp interface between two compo-
nents is present in the numerical solution. The switching function
takes the following form:

0 if [V -Y[>ey
if ‘Yj—Yj_|‘>8y
if [V = Yi > ey
lf |Yk—Yk_1|>8y

1 otherwise

b= (21)

oS o O

where ey is a user defined constant. Most of the test cases per-
formed in the report use a value of £,=1.0X 1072, When high-
resolution methods are used, the stencil of the differences used to
check for component interfaces is increased to match the stencil of
the unlimited numerical method.

Using the switching function defined above the semidiscrete
form of the preconditioned hybrid method is given by

@ ii+1/2 - ﬁj—1/2 ék+l/2 - 6k1/2:|
r, Is + ¢|: Aé + Anp
Saye (Lim Qi) | gy (L=
+(1- ¢)rp[(r1,1A)jm< A ') +(Fp1A)j+1/2( ig )]
1A 00— 0 A 0 + -0
#(1- ¢)r,,[(r,,‘3)k_1/2(—k vy ‘) +<FplB)k+1/2( gy k)]
(22)

Note that the preconditioning matrix I', premultiplying the
pseudo-time-derivative as well as the nonconservative flux differ-
ences is evaluated at the grid points, while the preconditioned flux
Jacobians are evaluated at the cell interfaces for both the conser-
vative and nonconservative methods. Provided the parameter ey is
chosen sufficiently, pressure and velocity equilibrium is main-
tained across fluid interfaces, and the correct discontinuous weak
solution is predicted as the grid is refined, even for strong shocks.
Note that for single component flows and/or sufficiently well
mixed multicomponent flows the nonconservative method is never
turned on and the hybrid method reduces to the preconditioned
Roe scheme everywhere.

The use of time-derivative preconditioning destroys the time
accuracy of the governing equations. In order to overcome these
difficulties the dual time formulation is utilized, as described in
Refs. [16,15]. With the dual time approach, the unsteady equa-
tions are embedded in a pseudo-time-process and the physical
time derivative is discretized using an unconditionally stable (lin-
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Fig. 4 Grid convergence of pressure (upper) and velocity
(lower) for Riemann problem Ill using PROE

early) implicit method, such as implicit Euler or BDF2. A com-
plete description of the dual time discretization for the conserva-
tive, nonconservative, and hybrid approaches is given in Ref. [29].

Discretization of the spatial and physical time derivatives re-
sults in a large system of ordinary equations in pseudotime s. For
steady state analysis this system is marched in pseudotime to an
asymptotic steady state. Upon which the converged solution rep-
resents the numerical approximation to the steady governing equa-
tions. For unsteady analysis, the system is marched to an
asymptotic steady state at each physical time step. Since the
pseudotime accuracy of the solution is not important, the discreti-
zation method applied to the pseudo-time-derivative is chosen
based on stability properties. The implicit Euler time discretiza-
tion provides a simple and unconditionally stable (linearly)
method allowing large pseudo-time-steps to be chosen to acceler-
ate the convergence to an asymptotic steady state.

The system of equations can be written in functional notation as
0@/0s=1§(Q), where R represents the discretized spatial deriva-
tives as well as the discrete physical time derivatives if unsteady
analysis is being considered. Applying the implicit Euler time
discretization to the semidiscrete system and locally linearizing

MARCH 2009, Vol. 76 / 021210-7

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



T T Y T .
—7 ROE —7~ROE

T 0.9F .

0.8 0.8} E

0.8} E o7l |

071 ) 0.6 ]

o i >

2 0.6 E 0.5F 1

/ §

& 05 1 > o4} i
04r ] 0.3f 1
0.3f ] 0.2f E
0.2F 1 0.1} J
0.1F E o} 4

-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5 -05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5

(3) x—coordinate (b) x—coordinate

—7 ROE
1t PROE| 4
6 E -©-PSCM
—8—HYBR
55} i —— Exact
0.8f
5F J
4.5 {1 <

4] _g 0.6

2 4f 1 g

= [y

(9]

£, s

5 E ©
0.4F
° s
3r 4
2.5 1 0.2f
2t J
1.5} J of
-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5 -05 -04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4 0.5
() x—coordinate (d) x—coordinate

Fig. 5 Results for Riemann problem IV (top to bottom): pressure, velocity, temperature, and mass fraction

the resulting nonlinear system of equations about Q", the delta
form of the equations is obtained

I aR \" X
E_<@) AQ"=R(Q™)

where R/ dQ is the system Jacobian of the discrete nonlinear
equations. When high-order upwind biased differencing is used,

(23)

&Ié/&Q is approximated by the system Jacobian of the first order
upwind spatial discretization. This decreases the storage and in-
creases the diagonal dominance of the system allowing efficient
relaxation techniques to be used to approximate the solution of the
linearized system. For the computed results in this paper an alter-
nating line-implicit Jacobi procedure is used. Typically two to
three relaxations suffice to obtain good nonlinear convergence.
For a more complete description of the solution procedure see
Ref. [29].

4 Computed Results

The time-derivative preconditioned system of equations de-
scribed in Sec. 2 and discretized in Sec. 3 is used to solve a series
of one-dimensional multicomponent Riemann problems. Three

021210-8 / Vol. 76, MARCH 2009

convective flux derivative discretizations are compared for each of
the test cases. These methods include the conservative PROE
method, the nonconservative PSCM method, and the
conservative/nonconservative HYBR method, which combines the
PROE and PSCM methods. Additionally, a nonpreconditioned
conservative Roe scheme extended to multicomponent flows, see
Ref. [7], is also applied to each of the ideal gas test cases. In each
of the cases first order accurate upwind spatial derivatives and
implicit Euler time discretization are used. By restricting the order
of accuracy the true dissipative nature of the schemes as well as
nonphysical behavior can be assessed.

The following series of one-dimensional multicomponent Rie-
mann problems illustrates the difficulties encountered when ex-
tending well-established single component numerical methods to
multicomponent flows as well as demonstrates the capability of
the HYBR method to handle these difficulties. An exact solution
of the multicomponent Riemann problem has been derived by the
present author for comparison purposes. This solution matches the
one reported in Ref. [40]. Unless specified otherwise, a uniform
grid of 200 points, a physical time CFL=At(|u|+c)/Ax=0.9, and
subiteration convergence criteria of five orders of magnitude re-
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Fig. 6 Top two: grid convergence of pressure (upper) and velocity (lower) for Riemann problem IV using PROE. Bottom
two: grid convergence of pressure (upper) and velocity (lower) for Riemann problem IV using HYBR.

duction in the maximum residual are used for each of the meth-
ods. For the hybrid method, a mass fraction switching value of
£y=1.0x 1072 is used throughout.

4.1 Riemann Problem I. The following problem is essen-
tially a single component case solved to ensure that a consistent
and accurate numerical implementation of each of the methods
has been performed. The initial conditions of the Riemann prob-
lem correspond to a moving contact discontinuity, which propa-
gates from left to right.

(pottrprs Y1 v, Cprn P )" =(1.0,1.0,1.0,1.0,1.4,1005.0,0.0)"

(ProtrsPRs Yo Yo s Poo g) T = (0.1,1.0,1.0,0.0,1.4,1005.0,0.0)"

Figure 1 shows the computed pressure, velocity, temperature, and
mass fraction at r=0.25 s. Each of the methods produces oscilla-
tion free pressure and velocity profiles as predicted. The conser-
vative methods appear to produce solutions containing a phase
error in the temperature and mass fraction variables. If the con-
served quantities, such as mass (density), are plotted instead, then
this phase error is not present in the solutions produced by the
conservative methods, but instead appears in the solutions given
by the nonconservative and hybrid methods. This simply has to do
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with the set of variables being differenced in the physical time
derivative. Note that it does not depend on the variables that a
particular scheme updates, such as the PROE method, which is
conservative but updates the primitive variables.

4.2 Riemann Problem II. The next Riemann problem illus-
trates the fact that if the temperature across the component inter-
face is equal, then the conservative methods do not produce the
nonphysical pressure oscillations. This was pointed out by Jenny
et al. [9], and often leads to confusion when a conservative
method is applied to the moving contact problem. For instance,
some authors may claim that a particular conservative method
does not generate nonphysical pressure oscillations across the
moving contact, but then only demonstrate this when the tempera-
ture is equal on both sides of the contact. Here we show that the
conservative ROE and PROE methods are able to preserve pres-
sure and velocity equilibrium across the moving contact when the
temperature is constant. In the next case, the more general moving
contact with different temperatures across the fluid interface is
examined.
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Fig. 7 Results for Riemann problem V (top to bottom): pressure, velocity, temperature, and mass fraction

(prsttrprs Y1, v, Cpro P )" =(0.531,1.0,1.0,1.0,1.6,1005.0,0.0)"

(protigoP Y o Vs Cp.s Poo )™= (1.194,1.0,1.0,0.0,1.2,1005.0,0.0)”

Figure 2 displays the computed pressure, velocity, temperature,
and mass fraction at r=0.25 s. As predicted in the analysis given
by Jenny et al., any conservative method that coincides with the
exact Godunov method for the moving contact discontinuity will
preserve pressure equilibrium across a gas/gas interface when the
temperature is constant across the interface. This does not imply
that the conservative methods preserve pressure equilibrium
across a moving contact for the more general Riemann problem,
as will be demonstrated next.

4.3 Riemann Problem III. As alluded to in the previous
case, the conservative methods have been predicted to produce
nonphysical pressure and velocity oscillations across a moving
gas/gas contact when both y and temperature vary across the dis-
continuity. The purpose of the test case is to demonstrate this fact
as well as to show that the nonconservative and hybrid methods
accurately predict the contact wave while discretely preserving
pressure and velocity equilibrium. The initial data for the case are
given below.

021210-10 / Vol. 76, MARCH 2009

(prurprs Y, v, Cp . P p)"=(1.0,1.0,1.0,1.0,1.6,1005.0,0.0)”

(PrsttsPrs Yo Yoo Co o Poe )T = (0.1,1.0,1.0,0.0,1.2,1005.0,0.0)

Figure 3 plots the pressure, velocity, temperature, and mass frac-
tion at r=0.25 s. The nonphysical pressure and velocity oscilla-
tions are clearly seen in the solutions produced by the conserva-
tive methods, while oscillation free profiles are computed with the
nonconservative and hybrid methods. These oscillations are
present in the first order method and therefore cannot be sup-
pressed using TVD strategies. It is also necessary to point out that
the correct weak solution is obtained by the nonconservative
method even though the solution is not smooth. This is because
the discontinuity in the solution is associated with the linearly
degenerate eigenspace, which moves at the local fluid velocity.
Since the nonconservative method also moves this discontinuity at
the local fluid velocity the solution coincides with the correct
weak solution.

It is often argued that the nonphysical oscillations are not that
important and can be reduced through grid refinement. This is a
very dangerous argument to use when considering reactive flows
where false chemical reactions can take place caused by the non-
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physical pressure oscillations. These chemical reactions com-
pletely change the character of the computed solution, which may
trigger more spurious phenomenon. As for the matter of suppress-
ing the oscillations with grid refinement, we demonstrate in Fig. 4
that even with a mesh spacing of 6.25X 10~ over a unit interval
the pressure and velocity oscillations are still clearly present.

4.4 Riemann Problem IV. In the previous case we estab-
lished the mechanism for which nonphysical solution behavior is
generated when conservative numerical methods are applied to
multicomponent problems. The present test case extends this
knowledge to the less trivial Riemann problem containing a left
moving rarefaction, right moving contact, and right moving
shock.

(prusPr Y1 Y1, Cp o Po )T = (1.0,0.0,1.0,1.0,1.6,1005.0,0.0)”

(PrstigsPR> Yo Yo Cp s Poo ) ™= (0.125,0.0,0.1,0.0, 1.2,1005.0,0.0)”

The initial data given above correspond to a weak shock, but even
for this case the nonconservative PSCM method clearly fails to
compute the correct shock jumps and appears to have a reduced
shock speed. This is displayed in Fig. 5 where the computed pres-
sure, velocity, temperature, and mass fraction are plotted. Addi-
tionally, it is observed that the conservative ROE and PROE
methods fail to produce the correct velocity jump on the right side
of the contact discontinuity. This spurious behavior is more easily
observed in Fig. 6 (top two figures) where even under mesh re-
finement the nonphysical jump persists. The HYBR method
clearly performs well on this case and converges to the correct
weak solution as the grid is refined, as shown in Fig. 6 (bottom
two figures).

4.5 Riemann Problem V. It has been established that the
hybrid method is able to obtain the correct weak solution for weak
shocks, while preserving pressure and velocity equilibrium across
fluid interfaces. This next test involves a very strong shock and
proves to be a difficult test for all the methods considered here.
The initial data, given below, correspond to a left rarefaction, a
right moving contact, and a right moving shock.

(prsursPr, Y1, ¥, Cp 1 Poe )T = (1.0,0.0,500.0,1.0,1.6,1005.0,0.0)”

(pR,MR,pR, YR’ YR> CP,RvPoo,R)T= (0125,00,02,0.0, 12, 10050,00)T

Figure 7 shows the computed pressure, velocity, temperature, and
mass fraction at r=0.01 s. The nonconservative PSCM method
appears to give wildly incorrect results, while the conservative
methods produce a similar nonphysical velocity jump to the right
of the contact, as observed in the previous case. At this grid res-
olution the HYBR method appears to have a chosen some of the
poor features of each of the two underlying methods. This is es-
pecially seen in the velocity and pressure profiles. As the grid is
refined the nonphysical features are suppressed, as shown in Fig.
8, but it appears that the hybrid method does not handle strong
shock wave phenomenon very well. Since we are mostly inter-
ested in low speed applications such as cavitation and liquid/solid
combustion the present result does not really affect the merits of
the HYBR method. With that said, anyone planning to use the
HYBR method for high speed reacting flows such as nonequilib-
rium hypersonic flow may need to modify the components of the
scheme considerably. This is not surprising since the standard Roe
method has known failures when applied hypersonic flows.

4.6 Riemann Problem VI. The previous multicomponent
Riemann problems consisted of two ideal gases. The following
two problems extend to liquid/gas flows with large density ratios
and drastic changes in the equation of state. To begin, the moving
contact problem is revisited where the contact now separates wa-
ter and air, and the initial data for the problem are given below.
Note that we have chosen the initial data such that the temperature
is not equal across the contact. This case is similar to the one
solved by Neaves and Edwards [27] using the low diffusion flux
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Fig. 8 Grid convergence of pressure (upper) and velocity
(lower) for Riemann problem V using HYBR

splitting scheme, a variant of AUSM. But there initial data assume
a constant temperature across the contact; therefore no spurious
oscillations were observed.

(prttrprs Y1 ves CP,L? Poc,L)T
=(1250.0,675.0,101,300.0,0.0,1.93,8076.7,1.14 X 10™°)"

(ProURsPR Y RS VRS CP,Rv Pw,R)T
=(1.25,675.0,101,300.0,1.0,1.4,1005.0,0.0)"

Figure 9 displays the computed pressure, velocity, temperature,
and mass fraction at t=4.0X 107 s. It is obvious from the pro-
files that the conservative method produces large pressure and
velocity oscillations on the order of 1.5%10* Pa and 35 m/s,
respectively. Additionally, a physical time CFL=0.002 was re-
quired by the PROE method such that negative pressures and
temperatures were not generated during the time integration,
while the PSCM and HYBR methods were run at the efficient
physical time CFL=0.9 with no problems. Note that &y was re-
duced to 1.0 X 1073 for this test case since some small oscillations
in the solution do appear when e,=1.0X 1072,
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Fig. 9 Results for Riemann problem VI (top to bottom): pressure, velocity, temperature, and mass fraction

This case was also ran with constant temperatures across the
interface as in the original problem posed by Neaves and Edwards
[27]. And similar to the results of the gas/gas problem, no oscil-
lations are generated, but the time step restriction is still present. It
is mentioned by Neaves and Edwards that small physical time
steps were used for there problems to minimize time-step errors,
but this may have more to do with stability restrictions caused by
the conservative numerical method. Since this version of AUSM
has not implemented, there is no way to confirm this. But for the
conservative PROE method, severe stability restrictions have been
observed.

4.7 Riemann Problem VII. The final Riemann problem of
the series involves high pressure air shock transmitting through
water. The initial data, given below, correspond to a left rarefac-
tion in air, a right moving contact separating air and water, and a
right moving shock in water. This case involves large density
ratios, varying equations of state, and shock waves moving
through liquids.

(pL,ML,pL, YL’ YLs CP’L,Poc,L)Tz (116 X 104,0.0, 10
% 10%,1.0,1.4,10,005.0,0.0)”
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(pR’uRva’ YR’ Yrs CP’R,Pm,R)Tz (975 X 102,0.0, 1.0
X 10%,0.0,1.92,8076.7,1.14
x 10%)7

The initial temperature profile for this case is constant and the
shock wave is weak so all three methods appear to perform ad-
equately. Note that the physical time CFL was reduced to 0.8 for
the PROE methods such that negative pressure nor temperature
was generated during the time integration process. It is interesting
that all of the methods excessively smear the shock. This is not
observed when the shock moves through a gas, and must have
something to do with the stiffened gas equation of state. This
implies that high fidelity grid resolution is necessary when mod-
eling shocks moving through liquids using the current methods
described.

Concluding the series of multicomponent Riemann problems,
we have established and demonstrated the nonphysical behavior
of conservative multicomponent methods, observed severe physi-
cal time step stability restrictions using the PROE method when
liquid/gas flows are being modeled, and have shown that the non-
physical oscillations, although are reduced, still exist as the grid is
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refined. Alternatively, we have shown that the PSCM method does
not suffer from the nonphysical pressure and velocity oscillations,
converges to the correct weak solution when discontinuities only
exist in the linearly degenerate eigenspaces, but does not converge
to the correct weak solutions when shocks are present. Addition-
ally, the combination of the two methods in the HYBR method is
shown to preserve pressure and velocity equilibrium across con-
tacts, converges to the correct weak solution (even for strong
shocks provided the grid is well resolved), and does not suffer
from any time step stability restrictions when liquid/gas flows are
being considered. Therefore the HYBR method appears to be the
preferred method for multicomponent flows. The remainder of the
chapter is designed to confirm this assertion for multidimensional
flows at all speeds.

5 Summary

A conservative, nonconservative, and hybrid time-derivative
preconditioning method has been described. The conservative
PROE method, which was demonstrated by the present authors to
perform well on single component flows at all speeds [3], has
been shown to lack robustness when applied to multicomponent
flows and generates nonphysical oscillations near sharp compo-
nent interfaces. The nonconservative PSCM method remains ro-
bust when applied to multicomponent flows and is accurate for
flows without shocks, but converges to nonphysical solutions
when shocks are present. The hybrid method, which combines the
PROE and PSCM methods, retains the positive features of each of
the methods resulting in a robust and efficient method for multi-
component flows at all speeds. In Part II of this paper each of the
methods is applied to two-dimensional steady and unsteady mul-
ticomponent and multiphase flows, and similar behavior is ob-
served.
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A Multiscale Finite Element
Formulation With Discontinuity
Capturing for Turbulence Models
With Dominant Reactionlike

A stabilization technique targeting the Reynolds-averaged Navier—Stokes (RANS) equa-
tions is proposed to account for the multiscale nature of turbulence and high solution
gradients. The objective is effective stabilization in computations with the advection-
diffusion reaction equations, which are typical of the class of turbulence scale-

determining equations where reaction-dominated effects strongly influence the boundary
layer prediction in the presence of nonequilibrium phenomena. The stabilization tech-
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1 Introduction

Special-purpose computational fluid mechanics techniques tar-
geting turbomachinery are becoming more and more effective in
better understanding of the flow problems in this important appli-
cation area. Many challenges, including the turbulent flow fea-
tures, are still in need of improved modeling techniques. Ex-
amples of the efforts in this direction include stabilization
methods for turbulence closures [1-3] and large eddy simulation
(LES) techniques based on variational multiscale methods [4-6].

The physics of turbulent flows in turbomachinery configura-
tions is governed by nonequilibrium phenomena that cannot be
addressed adequately with the Boussinesq effective viscosity con-
cept. This is because of the presence of the curvature and rotation
effects and large separation and recirculation regions. Even when
tackled with advanced turbulence closures such as nonisotropic
first order models or Reynolds-stress models, flow simulations
involve numerical shortcomings that are not fully addressed by
standard stabilization methods developed in the context of
advection-diffusion type equations.

The numerical counterpart of the nonequilibrium phenomena is
that the flow is governed by scale-determining equations with
dominant reactionlike terms, stemming from turbulence dissipa-
tion mechanisms involved. For example, reactionlike terms be-
come dominant in stagnation regions, separated boundary layers,
and recirculating flow cores, where the flow velocity approaches
zZero.

In recent decades, a number of studies focused on stabilized
formulations for advection-diffusion reaction equations. These in-
clude equations governing chemically reacting flows and equa-
tions with numerically generated reactionlike terms. As examples
of such studies, we can mention the diffusion for reaction dom-
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nique, which is based on a variational multiscale method, includes a discontinuity-
capturing term designed to be operative when the solution gradients are high and the
reactionlike terms are dominant. As test problems, we use a 2D model problem and 3D
flow computation for a linear compressor cascade. [DOI: 10.1115/1.3062967]

inated (DRD) method by Tezduyar and Park [7,8], studies by Co-
dina [9], unusual stabilized finite element method (USFEM) by
Franca and Valentin [10], SPG by Corsini et al. [1], and stabilized
methods emanating from the variational multiscale (VMS) con-
cept [11], such as the ones described in Refs. [12,2,13].

In this paper, we describe a stabilization technique targeting the
Reynolds-averaged Navier—Stokes (RANS) equations, accounting
for the multiscale nature of turbulence and the high solution gra-
dients involved. The technique is based on the variable sub grid
scale (VSGS) formulation [2] and includes discontinuity capturing
in the form of a new generation DRD method [3]. The objective in
the approach we take here is to accomplish the additional stabili-
zation without affecting the accuracy in advection-dominated
zones and in zones where the solution is smooth. The main appli-
cation area we have in mind is turbomachinery. We are focusing
on addressing the numerical challenges posed by the reactionlike
terms appearing in the closure equations for advanced eddy vis-
cosity models, such as the nonlinear k- model [14].

In Sec. 2, we provide an overview of the nonlinear k-& model
and the strong formulation of the RANS problem. The variational
multiscale formulation for the RANS equations is described in
Sec. 3. In Sec. 4, we describe the stabilization parameters, discon-
tinuity capturing, and the DRD method, including the DRDIJ
method, which takes into account the local “jump” in the solution.
The model test problem is presented in Sec. 5 and the 3D flow
computation of a linear compressor cascade in Sec. 6. Concluding
remarks are given in Sec. 7.

2 RANS Formulation for Incompressible Turbulent
Flows

Let QO C R™“ be the spatial domain with boundary I" and (0,7)
be the time domain. The unsteady RANS equations of incom-
pressible flows can be written on Q and V¢ e (0,7) as

du
p<5+u.v,,_j>_v-o=o (1)
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Table 1 Closure coefficients in k and £ equations [13]
0.3[1 — exp[- 0.36/exp[- 0.75 max(é,w)]]]

€ 1 +0.35[max(é,)]'"

fu 1-exp[—(Re,/90)%—(Re,/400)%]

Cel 1.44

Cor 1.92

[ [1-0.3 exp(-Re})]

o, 1.3

oy 1

V-u=0 ()

p((;_(f+u~v¢)+3ks¢—jks>—V.(pyks(v¢))=0 (3)

where p is the density, u is the velocity vector, ¢p=(k,&)”, and k
and € are the turbulent kinetic energy and the homogeneous dis-
sipation variable. The symbols J and J;, represent the vector of
external forces and the source vector of turbulent scale-
determining equations. As proposed in Ref. [15], J accounts for
the volume sources related to the second and third-order terms in

the nonisotropic stress-strain constitutive relation [14]. The force
vector reads as

J=V- [— 0.1 V,T(e(u) -e(u) - e(u):e(u)%l)
+0.1y, () - e(u) + (co(u) - e(w))")
+ 0.26v,7'(w(u) - (u) — w(u):w(u)%l)
- IOCiVITZ(e(u) () )+ (e@)- ) @)
- SCiVﬂ’z(E(M)ZE(M))E(u) + SCivtg(w(u):w(u))e(u)]
(4a)

Here, e(u)=((Vu)+(Vu)T) is twice the strain-rate tensor, zo(u)
=((Vu)—(Vu)7) is twice the vorticity tensor, v, is the turbulent
kinematic viscosity defined as v,=cprTk, and 7=k/& is the tur-
bulence time scale, with ¢, and f, and other closure coefficients
for the turbulence model [14] used given in Table 1.

In Table 1, Re,=k?/(v&) is the turbulence Reynolds number,
and ¢ and @ are, respectively, the strain-rate and vorticity invari-
ants defined as é=70.5¢(u):e(u) and &=10.5zo(u): wo(u).

The source vector Jy, is defined as

P,—pD

T = g
ke caPi +E

(40)
where P,=pR:Vu is the production of turbulent kinetic energy
with R the Reynolds-stress tensor, D=2vV V’k‘V\*'% is the dissipa-
tion rate value on solid boundaries, and E
=0.0022ék7v,||V-(Vu)|]? is the near-wall additional source.

The stress tensor, in the momentum equation, is defined as

olp,u)=- <p + %k)l + pv,e(u) (5)

with v,=v+v,, where v is the molecular viscosity.
The diffusion terms in the turbulent scale-determining equa-
tions depend on a diffusivity matrix defined as
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with the value of the coefficients oy and o, given in Table 1.
The reaction terms, absorption like in Eq. (3), account for the
dissipation-destruction matrices and are defined as

B, 0
Bk8¢=[ :|¢

0 B. (7a)

with

> Bs = Calst% (7b)

The essential and natural boundary conditions for Egs. (1) and
(3) are represented as

u=g and ¢=g,. on T (8a)

8

no=h and n-(pv,.(V®))=0 on T, (8b)

where I', and T', are the complementary subsets of the boundary
I', n is the direction normal to the boundary, and g, g;,, and & are
the given functions representing the essential and natural bound-
ary conditions.

3 Variational Multiscale Formulation for RANS Equa-
tions

In describing the VSGS formulation of Egs. (1) and (3), we
assume that we have constructed some suitably defined finite-
dimensional trial solution and test function spaces %ZS;'),‘%Z,, and
\'h \'/’l '\rh

w Voo Ve

Thé7 variational multiscale formulation, based on the VSGS
method [2], reads as

find u” € S.p" € S). " € S} suchthat Vw" e V},, V4" e V),

vh
and Vo' e Vi

h

17
th~<i+uh~Vuh—3”)dQ+f e(wh):o(p", u")dQ
Q at Q

—f wh-hhdl"+f q"V -u"dQ
r Q

M)
+ 2| Pt (L")~ p0" N0
e=1 J(F

el
+ 2

e=1 J (¢

vpeppp V W Vu'd(Q =0 (9a)

where

B o' h h hol
E(g"w")=p o +u"-Vw" | =V . a(qg",w") (90)
and
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0”¢h h 1 h
Yp 7+u -V@"+ B -7, |dQ
Q

+f Vi (v (V)0 -2 | PR - [£,(¢)
Q

e=1 0e¢

el

—pal1d0+ Y, | KRV Va0 =0 (10a)
e=1 J (O°
where
h ‘M’h h h h n
Lks(¢)=p at +u V¢ +Bks¢ _V'(pvks(v¢ ))
(10b)

Here PP, P{° and KPC are, respectively, the VSGS stabilization
operators and the dissipation matrix for the discontinuity-
capturing (DC) scheme, while vpcpp is for the discontinuity-
capturing directional dissipation (DCDD) stabilization [6,16]. The
definition of vpcpp is given in Sec. 4.

A fundamental result [2] is the demonstration that VSGS stabi-
lization can be seen as a particular form of the Petrov—Galerkin
operator, thus the vectors P**? and P{" take the following forms:

P (wh) = 7'VSGSP(uh V)w'+ TpspG V ¢ (11a)

]P(u”-V)ll/’ (11b)

with 7yggs and 7pgpg being the VSGS and PSPG stabilization
parameters, the latter for equal-order velocity-pressure approxi-
mations. In Egs. (9a) and (10a), the VSGS parameters are defined
as the product of elementwise variable intrinsic time scale 7yggs-
These are defined in Sec. 4.

The dissipation terms for advection-diffusion reaction equations
are defined as

szb( lﬁh) _ [TVSGS-k

0 TVSGS-¢

K ’ 0
KkDac — [ DRDJ-k :| (12)

0 KDRDJ-&

Here kpgrpj.x and kpgrpj.e are the DRDJ additional diffusivities,
also defined in Sec. 4.

4 Stabilization Parameters and Discontinuity Captur-
ing

4.1 VSGS Parameters. The intrinsic time scale 7yggs, which
provides the subgrid scale residual modeling as proposed in Ref.
[2], is derived by the combination of one-dimensional intrinsic
time scale parameters, associated with each parent-domain coor-
dinate direction [2].

For u and ¢=(k,£)7, the time scales are defined along each
parent coordinate as the product of elementwise time scale 7se,

i

and the space-dependent function fg; [2], on the basis of direc-
tional Péclet numbers

_ luglhuox

(Peg), = (13a)

2y,

”§i|hUGN

(Peg)y = | .
2<v+ —l>

O

(13b)

Ugi ‘ hyen

|
(Pegi)s= ( Vr)
2lv+ —

O¢

(13¢)

and reaction numbers
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2 2
2 Bk hRGN-k Bs hRGN-s
Bi

_ 2 _
[t
v+ — v+ —
Oy O,

In the above definitions, the element length in the advection-
dominated limit [7] is

-1
hyen = 2(2 ‘S : VNa|)

a

(13d)

(14a)

where s is the unit vector in direction of the velocity.
In the diffusion-reaction dominated limit, the element length
turns to the corresponding scale [16,17]:

-
hRGN—k=2<2 |rk'VNa‘) (14b)

(14¢)

-1
hRGNfs = 2(2 |rs ) VNa|)

a

where r; and r, are the unit vectors in the direction of the solution
gradient defined as

VK Vig]
r, = N rS: —
VIl Bl

Remark 1. The reactionlike terms, not considered in most of the
stabilized formulations found in the literature, could be important
in turbulence computation. When considering the magnitude of
the reaction-to-advection ratios, reaction driven phenomena affect
the flow in the near-wall region and are emphasized in nonequi-
librium phenomena such as in the stagnation, transition, or sepa-
ration regions. Corsini et al. [3] recently demonstrated that ap-
proaching a solid wall, the reaction-to-advection ratio behaves
like l/dfv, with d,, being the distance from the solid wall.

The multidimensional time-scale parameter, in its space-time
version, is computed by using the r-switch [18]:

(14d)

1 1/r,

TVSGS = T\ T\ (15)
TVSGS Til/rgg}s

1 1/rg

where

space
2y

SGS = ( 1 )r: ( 1 )rx ( 1 )rs
— | +|{— ] +|—
Tscf 7sc Tsc

7 7

(1 +f§(§’Pe§’Bz)) ) (1 +f7;(7]’Pe7p,62)) : (1 +f{(§’Pe{sﬁ2))

(16a)
with 8=0 for the flow equations, and
. Ar

s = (16h)

4.2 Discontinuity-Capturing Parameters. The DCDD vis-
cosity is defined by using the expression from [6,16]

vpepp = Tocppl”* (17a)

with

h Ve[|
b= DCDD || H” ||H DCDD (17b)
2uref Uref

Here hpcpp is the element length scale in the diffusion dominated
limit [16,17], which reads as

-1
hpcpp = hron = 2(2 Ir- VN0|>

a

(18a)

and r is the unit vector in the direction of the solution gradient,
defined as
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Fig. 1 Scalar test case. Problem statement, and grid and boundary

conditions.
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As far as the reaction-dominated limit is concerned, the original
DRD method from Tezduyar and Park [7] was proposed as a
remedy for the numerical instabilities in Eq. (10a). The DRD
method was obtained for two limit cases: advection-reaction and
diffusion-reaction. For both cases, the analytical expression for
the additional DRD term depends on dimensionless numbers that
relate, respectively, the reaction rate to the advection and diffusion
rates, taking into account the quality of the grid used.

Recently [3], a new stabilization technique named DRDJ was
formulated, and this takes into account the local variation
(“jump”) in the solution, turning to a DRD-like discontinuity-
capturing scheme.

The DRDJ additional diffusivity reads, for advection-reaction
limit, as

(18b)

1 1
Kar(Vgod,) = EuhUGN‘Ie(_ coth y, + ‘y¢(m + 4a>)

(19a)
while for the diffusion-reaction limit it is defined as
(B,J.) =B (h“ﬂ‘f)zj(4 P i) (19b)
ORPe I =R T ) T M e g, B

where the subscript ¢=k,e generates the expressions correspond-
ing to k and &, with vy, and vy, defined as

By hugn
b/ AT (20a)
] 2
Bs hUGN
y, = o UGN (20b)
[lel| 2

Here, J, is a normalized measure of the variation (jump) in the
solution over an element. In Egs. (19a) and (19b), « is a param-
eter for the integration rule of the element reaction coefficient
matrix (e.g. @ equal to 1/6 for two-point Gaussian quadrature and
O for the “lumped” case).

The resulting DRDJ could be generalized to a multidimensional
diffusivity tensor:

021211-4 / Vol. 76, MARCH 2009

KprD)-¢ = KAR( Vs T )8 + kpr(Bys.J,) (tt + V) (21

where ¢ and v are the two unit vectors orthogonal to s and to each
other. We note that along the ¢ and v directions the numerical
diffusion is the one associated with the one-dimensional diffusion-
reaction case. For this reason, the element characteristic length
measure is provided by the hggy [16,17].

Remark 2. The parameter J, is defined as follows:

llll

where (dmax). and (Ppin), are the maximum and minimum values
of the variable ¢ for element e. Here ||, represents a local scal-
ing for the unknown, which could be set equal to a global scaling.
Turbulent flow parameters are characterized by different orders of
magnitude for different zones of the flow field, thus for turbulence
computations |||, in a way takes into account the local features of
the problem and is chosen equal to the maximum value of the
unknown in the element. With such a choice, as it is done for the
calculations presented here, we assure that J, ranges from O to 1,
thus leading to a diffusivity that is everywhere limited.

(22)

5 Scalar Test Case

The scalar test problem was first proposed in Ref. [7] as a test
for the original DRD formulation. The square domain is dis-
cretized with of a nonisotropic Cartesian grid with 41 X 21 linear
finite elements, and the problem statement is given in Fig. 1.

Figure 2 shows the solutions with the SUPG, SUPG+DRDJ,
and VSGS+DRDJ. Figure 3 shows some solution profiles ex-
tracted from near the boundaries where the reaction dominates
advection. The exact and SUPG plus mass lumping (SUPG
+ML) solutions are also plotted to provide comparison.

The SUPG+DRDIJ solution exhibits a 0.05 undershoot along
the second row of nodes (see Figs. 2(c) and 3(a)). This local
oscillation is eliminated in the SUPG+ML solution but with an
overdiffusive layer, and in VSGS+DRDIJ solution, which pro-
duces the sharpest undisturbed solution layer. For the third row of
nodes (Fig. 3(b)), the DRDJ solutions are all very close to the
exact solution but SUPG+ML still shows an overdiffusive behav-
ior.

From these results, we conclude that stabilization methods de-
signed to remedy instabilities due to dominant advection terms
cannot control instabilities due to dominant reactionlike terms.

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Z

o

e
7

]
ey,
'l"'

iy
%2

%
2%
e

GI

%

% Il'
/’ll

52

X
&

O
T
TR
W
7
205
000

I
%
0y

)
)
Wl
/"'//

)
i
i

1

i
<
<

>

7

057

%5

K5
“

g5

(558
o

i
0
%

1

Y
"
W

W
7
s

I
Il

S

7
i
Wy
0

0
"

v

)

o

0
7
h

v
i

a)

4
]
Y

S

Fig. 2 Scalar test case. (a) Exact solution, (b) SUPG, (¢)
SUPG+DRDJ, and (d) VSGS+DRDJ.

Some additional stabilization, different from mass lumping, which
is overdiffusive, is needed. The DRD formulation serves that pur-
pose while retaining the solution accuracy.

6 Turbulent Flow Test Case: NACA65 Compressor
Cascade

We considered the tip leakage flow in a linear compressor cas-
cade of NACAG65-1810 profile with flat ends. The main cascade
design parameters are shown in Fig. 4 together with the compu-
tational grid. The cascade has been experimentally investigated by
Kang and Hirsch [19,20]. The cascade has a tip clearance of 2%
of the chord length, and the inlet flow angle is equal to 29.3 deg
with respect to the streamwise direction.

The cascade flow is simulated in near-design incidence condi-
tion, with the flow regarded as incompressible and steady. In ac-
cordance with the experimental findings, the flow at the inlet is
fully turbulent, i.e., the measured shape factor is about 1.22 at
40% of the chord length upstream of the leading edge. The Rey-
nolds number is based on the chord length and the inlet bulk
velocity is 3 X 103, The experimental freestream turbulence inten-
sity is 3.4%. The dissipation length scale /, is set equal to 5% of
the chord length.

The solution domain encompasses the upper half of the blade
span (i.e., 104 mm from the casing to midspan, expecting the flow
to be symmetric in the spanwise direction), bounded by the two
symmetry planes in the pitchwise direction, and stretches 40% of
the chord length upstream from the blade leading edge and one
chord downstream from the trailing edge.

The coordinate system used is orthogonal, with x, y, and z
denoting the streamwise, pitchwise, and spanwise directions, re-
spectively. An embedded H-topology computational mesh with a
total of about 0.8 X 10° nodes with Q1-Q1 elements is adopted.
There are 141 nodes in the streamwise, 73 nodes in the pitchwise,
and 81 nodes in the spanwise directions, respectively. The mesh is
clustered around the blade walls, the leading and trailing edges,
and in the wake. The first wall-adjacent y+ values were every-
where lower than 1.6. A uniform discretization (with 21 points) is
used to resolve the tip gap.
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Fig. 3 Scalar test case. Profiles extracted at (a) second and (b)
third rows of nodes.

The position of the inlet is regarded as being sufficiently distant
to eliminate any upstream effect of the outflow conditions on the
solution both in the cascade passage and in the wake region.

Figure 5 shows the static pressure coefficient C,, computed by
using SUPG+DRDIJ and VSGS+DRDJ. The figure shows that the
two numerical solutions exhibit similar behaviors, being both in
qualitative agreement with the experimental results. When com-
paring the pressure fields in the region where the leakage flow
develops and rolls-up, the VSGS+DRDJ provides a nicer and
sharper representation of the isobar troughs tracing the vortex core
path. This is due to the reaction limit control in the vortex defect
region.

NACAGB5 cascade geomelry
profile family NACAE5 — 1810

é% aspeci ralio 1.0
%%%%gﬂ chord 200 mm
L spacing 180 mm
L
4 solidity 1111
g

7% stagger angle 10°

[(FF
[FHFF
(AL
7 "W/ ;
/)

Fig. 4 Cascade geometry and computational grid

MARCH 2009, Vol. 76 / 021211-5

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0)

Fig. 5 Static pressure coefficient isolines in the tip gap. (a)
Experiments [19], (b) SUPG+DRDJ, and (c) VSGS+DRDJ.

Figure 6 compares the predictions of the secondary flow phe-
nomena developing at the endwall, under the influence of tip leak-
age vortex. The streamline behaviors predicted are compared with
the flow physics as interpreted by Kang and Hirsch [19]. The
figure shows the streamline patterns at various significant loca-
tions, obtained by the SUPG+DRDJ and VSGS+DRDJ methods.
The two solutions are very close and compare well to the experi-
mental interpretation.

021211-6 / Vol. 76, MARCH 2009

47 i

Fig. 6 Streamlines and flow patterns in the tip gap. (a) Experi-
ments [19], (b) SUPG+DRDJ, and (c¢) VSGS+DRDJ (Sp: saddle
point; PV: passage vortex; TL: tip leakage; HSV: horse-shoe
vortex).

Figure 7 shows the chordwise evolution of the normalized tur-
bulent intensity (TI) on cross-flow planes. The TI isolines are
visualized with the tip leakage vortex streamlines. When compar-
ing the vortex cores, we see that both numerical formulations
predict fairly well the complex multiple-vortex aerodynamics at
the tip [19]. They successfully detect (i) the main tip leakage
vortex, (ii) a tip separation vortex traveling from the pressure to
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Fig. 7 TI distribution and tip leakage vortices detection. (a) SUPG+DRDJ and (b)
VSGS+DRDJ.

the suction side of the blade, and (iii) the separation vortex at the
leading edge.

Figure 8 shows the turbulent viscosity v, (normalized by the
molecular viscosity v) in the vicinity of the blade tip. The v,
contours are shown on the cross-flow planes to describe its axial
evolution within the swirling region at the tip. The comparison
shows that the VSGS+DRDIJ formulation exhibits less diffusive
behavior in the region with the largest solution gradient.

7 Conclusion

In this paper, we presented a variational multiscale method for
turbulence modeling based on the RANS approach. The method
addresses the numerical issues related to dominant reactionlike
terms involved in the turbulence model. A discontinuity-capturing
term provides the additional stabilization needed in parts of the
flow domain where the reactionlike terms become large, without

Fig. 8 Normalized turbulent viscosity v,/v distribution. (a)
SUPG+DRDJ and (b) VSGS+DRDJ.
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introducing excessive dissipation in other parts of the domain. The
test computations presented are for a 2D model problem and 3D
flow computation for a linear compressor cascade, and they estab-
lish the effectiveness of the method.
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